• 제목/요약/키워드: Spray Volume

검색결과 331건 처리시간 0.029초

분사 조건이 다공형 GDI 인젝터의 분무 거동에 미치는 영향 (Effect of Injection Conditions on the Spray Behaviors of the Multi-hole GDI Injector)

  • 박정환;박수한;이창식;박성욱
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.116-122
    • /
    • 2012
  • The purpose of this study is to investigate the overall spray behavior characteristics for various injection conditions in a gasoline direct injection(GDI) injector with multi-hole. The spray characteristics, such as the spray penetration, the spray angle, and the injection quantity, were studied through the change of the injection pressure, the ambient pressure, and the energizing duration in a high-pressure chamber with a constant volume. The n-heptane with 99.5% purity was used as the test fuel. In a constant volume chamber, the injected spray was visualized by the spray visualization system, which consisted of the high-speed camera, the metal-halide lamp, the injector control device, and the image analysis system with the image processing program. It was revealed that the injection quantity was mainly affected by the difference between the injection pressure and the ambient pressure. For low injection pressure conditions, the injection quantity was decreased by the increase of the ambient pressure, while it nearly maintained regardless of the ambient pressure at high injection pressure. According to the increase of the ambient pressure in the constant volume chamber, the spray development became slow, consequently, the spray tip penetration decreased, and the spray area increased. In additions, the circular cone area decreased, and the vortex area increased.

Study on Effects of Pressure Ratio on the Wall-impingement Spray Characteristics of Nitrogen Gas using CNG Injector

  • Pham, Quangkhai;Chang, Mengzhao;Choi, Byungchul;Park, Suhan
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, an experimental investigation on the effects of the pressure ratio on the wall-impingement spray characteristics of nitrogen gas using a compressed natural gas (CNG) injector was conducted. The transient development of the impingement spray was recorded by a high speed camera with Z-type Schlieren visualization method. The spray behavior under various pressure ratio conditions were analyzed. The experimental results showed that the pressure ratio has positive effect on the development of spray wall-impingement. The effects of the above factor were evaluated in a constant volume chamber at atmospheric conditions. The data from test showed that, with the increase of the pressure ratio, the spray tip penetration (STP) quickly increases before the impingement and gradually increases after the impingement. Additionally, the spray velocity first increases and then sharply decreases on regardless of the injection pressure level. As the spray spreading angle increases, spray area and volume increases rapidly with the increase in STP at the beginning of injection, and finally entered a stable range, has a great correlation with the increase of pressure ratios.

정적챔버에서 GDI용 연료분사기의 가솔린, M85, E85 및 LPG 분무 계측 (The Spray Measurements of Gasoline, M85, E85, and LPG by a GDI Injector in a Constant Volume Chamber)

  • 김성수
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.5-10
    • /
    • 2012
  • Spray structures and penetration lengths of Gasoline, M85, E85, and LPG by a GDI 6-hole fuel injector were examined in a constant volume chamber. The chamber pressure was controlled at 0.1 MPa and 0.9 MPa. The effects of fuel injection pressure and chamber pressure on the spray structures and penetration lengths were investigated using the 2-dimensional Mie scattering technique. It was found that the sprays developed linearly till ASOI 1.7ms after start of injection and vortices were happened around jets on the way of spray development. And the high chamber pressure, 0.9 MPa kept the fuel sprays development down and the penetration length was reduced to about 55% compared with that of 0.1 MPa. In additions high pressure of fuel injection, 12 MPa increased the spray penetration length more about 7~10% than that of 7 MPa.

ECN 연구용 고온 고압 정적 연소실에서의 n-dodecane 분무 및 연소 특성 (Spray and Combustion Characteristics of n-dodecane in a Constant Volume Combustion Chamber for ECN Research)

  • 김재헌;박현욱;배충식
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.188-196
    • /
    • 2014
  • The spray and combustion characteristics of n-dodecane fuel were investigated in a CVCC (constant volume combustion chamber). The selection of ambient conditions for the spray followed ECN (engine combustion network) guidelines, which simulates the ambient condition of diesel engines at start of fuel injection. ECN is a collaboration network whose main objective is to establish an internet library of well-documented experiments that are appropriate for model validation and the advancement of scientific understanding of combustion at conditions specific to engines. Therefore repeatability of the experiments with high accuracy was important. The ambient temperature was varied from 750 to 930 K while the density was fixed at around $23kg/m^3$. The injection pressure of the fuel was varied from 500 to 1500 bar. The spray was injected in both non-reacting ($O_2$ concentration of 0%) and reacting conditions ($O_2$ concentration of 15%) to examine the spray and the combustion characteristics. Direct imaging with Mie Scattering was used to obtain the liquid penetration length. Shadowgraph was implemented to observe vapor length and lift-off length at non-reacting and reacting conditions, respectively. Pressure data was analyzed to determine the ignition delay with respect to the spray and ambient conditions.

주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향 (Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow)

  • 이민철;김종현;구자예
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF

소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성 (Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure)

  • 정훈;김정수
    • 한국추진공학회지
    • /
    • 제12권5호
    • /
    • pp.1-8
    • /
    • 2008
  • 소형 액체로켓엔진 인젝터 분무의 공간분포 특성 규명을 위해 이중모드 위상도플러속도계(DPDA)를 이용한다. 분사압력 및 분무확산방향 이동거리를 변화시켜 분무액적의 크기, 속도 등을 측정하고, 산술평균직경(AMD), Sauter 평균직경(SMD), 수밀도, 스팬(span of drop size distribution), 그리고 체적 유속(volume flux) 등의 분무 매개변수를 도출하여 인젝터 분무의 분열특성을 고찰한다. 분사압력이 증가함에 따라 분무액적의 수밀도, 스팬, 그리고 체적 유속은 증가하지만, AMD는 감소하였다.

연료 종류에 따른 이중 오리피스 노즐의 분무 특성 연구 (A Spray Characteristics of Dual Orifice Injector with Different Fuel Properties)

  • 이동훈;최성만;박정배
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.7-15
    • /
    • 2003
  • The effects of fuel density and fuel viscosity on spray characteristics were investigated under two different gas turbine fuels and various fuel supply pressure conditions through measurement of SMD, number density and volume flux by using PDPA system in dual orifice injector for gas turbine engines. In this study, we found out that the droplet size and spray structure are strongly depend on fuel density for dual orifice injector. The spray characteristics of high density fuel in dual orifice injector are similar with the characteristics of low density fuel in single orifice injector. The shear region between primary main fuel stream and secondary main fuel stream is examined in low density fuel condition but not exist in high density fuel condition, then this shear region is very important in quality of gas turbine spray. There are worth consideration for the effect of fuel density on spray characteristics in frontal device design to improve combustion efficiency.

  • PDF

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과 (The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner)

  • 이인수;정지원;차건종;김덕줄
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF

스프레이 특성에 가솔린 - 바이오 디젤 혼합 연료의 효과 (The effects of Gasoline-Biodiesel Blended Fuels on Spray Characteristics)

  • 삭다 통사이;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.287-293
    • /
    • 2015
  • The current study has investigated the effects of biodiesel blended with gasoline on the spray characteristics in a Constant Volume Combustion Chamber (CVCC). With the concentration of 5, 10, 15 and 20% by volume, biodiesel was blended with commercial gasoline and performed on the macroscopic visualization test. Pure gasoline and biodiesel were also tested as the reference. The shadowgraph technique was conducted in the constant volume chamber. The spray images were recorded by a high speed video camera with frame speed 10,000 frame per second. Fuel injection was set at 800, 1000 and 1,350 bar with the simulated speed 1,500 and 2,000 rpm. The back pressure was controlled at 20 bar. The spray angle and penetration tip were measured and analyzed by using the image processing. At the high injection pressure, the spray penetration length with the simulated speed 1,500 rpm showed that B100 was lower than GB00-20 whereas the spray penetration length with the simulated speed 2,000 rpm exhibited that GB blends and B100 were insignificantly different. Due to biodiesel concentration, its effects on spray angles were observed throughout injection periods (T1, T2 and T3). At the simulated speed 1,500 rpm, the spray angle of GB blends and B100 presented the same pattern following injection timing. In addition, when the simulated speed increased to 2,000 rpm the different spray angle of all blends disappeared at main injection (T3).