• Title/Summary/Keyword: Spray Transfer

Search Result 209, Processing Time 0.024 seconds

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1481-1486
    • /
    • 2004
  • This report presents experimental results on the heat transfer coefficients in the boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distribution of a two dimensional dilute spray impinging on hot plate was experimentally investigated. Based on the experimental results, they classified the heat transfer area into the stagnation region and wall-flow region. In the stagnation region, the local heat transfer coefficient relates mainly to the droplet-flow-rate supplied from spray nozzle directly, so the local heat transfer coefficients is good agreement with the predicted values from correlation for spray cooling proposed by former report However, the local heat transfer coefficient in wall-flow region is larger than predicted values, and it is found that the rebounding droplets-flow-rate must be accurately evaluated to predict the local heat transfer coefficient in this region.

  • PDF

A Study on the High Temperature Region Heat Transfer Coefficients for the Spray Cooling of Hot Flat Plates (평판 분무냉각 시의 고온역 열전달계수에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, experiments investigating the high-temperature region heat transfer coefficients for the spray cooling of hot flat plates were performed by down spray water using flat spray nozzles. The heat transfer surface is made of copper and is 100mm in length and 40mm in width and 15mm in thickness. The experimental condition of spray are as follows: temperatures of the water droplets are T=20~$80^{\circ}C$ and droplets volume fluxes are D=0.001565~0.010438$m^3/m^2s$. Next, correlating equations for the heat transfer characteristics of spray cooling in the high temperature region are developed from the effects of droplets volume flux and the surface temperature of heat transfer plate.

  • PDF

A Study on the Spray Cooling Characteristics of hot Flat Plates (고온평판의 분무냉각특성에 관한 연구)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

Experimental Study on Film Boiling Heat Transfer of Spray Cooling for Inclined heat transfer Surface (경사면에서의 분무냉각 막비등 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The film boiling heat transfer was experimentally investigated for the water sprays impacting on an inclined hot surface. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made for different inclination angles of $\theta=0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The experimental results show that, in the downstream region of the inclined hot surface, increasing the inclination angle increases the local heat flux slowly because of increasing the number of rebound droplets. However, the inclination angle of heat transfer surface had no remarkable effect on the local heat flux of spray cooling under the present test conditions.

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

Experimental Study on Spray Cooling Heat Transfer of Micro-Fins Surfaces (마이크로 휜 표면의 분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.178-183
    • /
    • 2009
  • Spray cooling heat transfer was experimentally investigated for water sprays impacting on mico-fins structured surfaces in the single phase and nucleate boiling regions. The heat transfer surfaces consist of cubic fins and triangular grooved fins. The spray produced using full cone spray nozzles, and experiments were made under the test condition of $Q=4.92{\times}10^{-6}{\sim}15.83{\times}10^{-6}\;m^3/s$, $T_f=35{\sim}55^{\circ}C$. From the experimental results, it was found that cubic fins surface had the largest heat flux enhancement relative to the smooth surface.

  • PDF

Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate . (분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정)

  • 김영찬;유갑종;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF

Study on Boiling Heat Transfer of FC-77 in Spray Cooling (FC-77의 분무냉각 비등열전달 특성에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • The boiling heat transfer was experimentally investigated for the FC-77 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of $Q=3.32{\times}10^{-6}{\sim}2.30{\times}10^{-5}\;m^3/s$, ${\Delta}T_{sub}=20{\sim}70^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\times}10\;mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for FC-77.

  • PDF

Correlation of Droplet Flow Rate and Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 액적유량과 분무냉각 열전달의 상관관계에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • In the present study, the correlation between the Nusselt number and Reynolds number was developed for forced convection and nucleate boiling region in spray cooling. Also the effect of droplet subcooling on spray cooling heat transfer was investigated. Full cone spray nozzles were employed for spray cooling experiment, and water and FC-77 were used for developing the correlation. From the experimental results, the correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for water and FC-77.

  • PDF