• 제목/요약/키워드: Spray Model

검색결과 493건 처리시간 0.022초

액막형성을 고려한 분무-벽 상호작용에 대한 모델 (Modeling of Spray-Wall Interactions Considering Liquid Film Formation)

  • 이성혁;유홍선
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1010-1019
    • /
    • 2000
  • The main purpose of this article is to propose and assess a new spray impingement model considering film formation, which is capable of describing the droplet distribution and film flows in direct injection diesel engines. The spray-wall interaction model includes several mathematical formulae, newly made by the energy conservation law and some experimental results. The model consists of three representative regimes, rebound, deposition and splash. In addition, the film flow is described in the present model by solving the continuity and momentum equations for film flows using the integral method. To assess the new spray impingement model, the calculated results using the new model are compared with several experimental data for the normally impinging diesel sprays. The film model is also validated through comparing film radius and thickness against experimental data. The results show that the new model is generally in better agreement with experimental data and acceptable for prediction of the film radius and thickness.

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.

고압에서의 분무의 증발 및 연소 현상에 관한 연구 (Study on Vaporization and Combustion of Spray in High Pressure Environment)

  • 왕태중;백승욱
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

고속직분식 디젤엔진에서의 분무충돌과 연료액막형성 모델링 (Modeling of Spray Impingement and Fuel Film Formation in HSDI Diesel Engines)

  • 김만식;민경덕;강보선
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.187-194
    • /
    • 2001
  • Spray impingement and fuel film formation models were developed and incorporated into the computational fluid dynamics code. STAR-CD. The spray/wall interaction process was modeled by considering the change of behaviour with surface temperature conditions and the fuel film formation. We divided the behaviour of fuel droplets after impingement into rebound, spread and splash using the Weber number and the parameter K. The Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, Navier-Stokes and energy equations along the direction of fuel film thickness. Validation of the models was conducted using previous diesel spray experimental data and the present experimental results for the gasoline spray impingement. In all the cases, the prediction compared reasonably well with the experimental results. The spray impingement and fuel film formation models have been applied to the spray/wall impingement in high speed direct injection diesel engines.

주상활주선형(柱狀滑走船型)의 SPRAY 관측(觀測)과 저면압력분포(底面壓力分布) (Some Tests on Spray of a Prismatic Planing Hull)

  • 하문근;중도 도부
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.100-111
    • /
    • 1994
  • 고속정은 spray를 수반하는 흐름 특성을 가지고 있다. 본 연구에서는 이러한 spray의 흐름 특성을 파악하기 위해 몇가지 실험을 수행하였다. 우선 아크릴판으로 만든 주상활주선형을 이용하여, 예인수조에서 흐름의 가시화를 수행하고, 그 기록으로부터 화상해석을 통하여 spray흐름의 방향, 유속등을 계측하였다. Spray에 의해 발생하는 모델의 양력, 항력을 구하기 위해서는 spray의 두께가 주요한 계측 항목이 된다. 본 연구에서는 운동량 이론을 이용한 새로운 spray의 두께 계측법을 제시하였다. Spray의 두께를 국부적으로 계측하여 저항성분을 구하여 적분하므로써, 본 실험모델이 받는 저항성분중 spray저항을 평가하였다. 또한 활주모델의 저면에서 압력을 계측하여 spray가 발생하는 원리를 보여 주었으며, 계측된 압력을 적분하므로써 모델에 작용하는 압력저항성분을 평가하였다.

  • PDF

분위기 조건이 직접 분사식 가솔린 분무의 발달 과정 및 미립화 특성에 미치는 영향 (Effect of ambient conditions on the spray development and atomization characteristics of a gasoline spray injected through a direct injection system)

  • 하성용
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the effects of ambient pressure on atomization characteristics of high-Pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. In order to investigate the atomization process numerically, the LISA-DDB hybrid model was utilized. This breakup model assumes that the primary breakup occurs when the amplitude of the unstable waves is equal to the radius of the ligament of liquid sheet near the nozzle and the droplet deformation induces the secondary breakup. The results provide the effect of ambient pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is also revealed that the accuracy of prediction of LISA-DDB hybrid model is pretty good in terms of spray developing process, spray tip penetration, and SMD distribution.

  • PDF

디젤 엔진 분무의 액적 미립화 모델 및 벽면 충돌 모델에 관한 연구 (Modeling of Liquid Droplet Atomization and Spray Wall Impingement of Diesel Sprays)

  • 김홍석;성낙원
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.69-81
    • /
    • 1999
  • In this research computational methods for the droplet atomization and spray wall impingement are studied for the non-evaporating diesel fuel spray. The TAB(Taylor Analogy Breakup) model and Wave model are compared with experiments in order to describe droplet atomization process. The Watkins model and O'Rourke model are compared to simulate the spray wall impingement. As a result, It is found that the application of the Wave model has a good agreement with the experimental data in the case of high pressure injection. With regard to wall Impingement phenomena, it is found that the Watkins model is appropriate to the high temperature cylinder wall condition, while the O'Rourke model is appropriate to cold starting problem.

분위기 조건에 따른 GDI 엔진용 인젝터의 분무거동 및 증발특성에 대한 수치적 해석 (Numerical Analysis of Spray Behavior and Vaporization Characteristic of GDI Engine Injector Under Ambient Conditions)

  • 심영삼;황순철;김덕줄
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.545-552
    • /
    • 2004
  • The purpose of this study is to improve the prediction ability of the atomization and vaporization processes of GDI spray. Several models have been introduced and compared. The atomization process was modeled using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed TAB (APTAB) model. The vaporization process was modeled using Spalding model and Abramzon & Sirignano model. Exciplex fluorescence method was used for comparing calculated with experimental results. The experiment and computation were performed at the ambient pressure of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293k and 473k. Comparison of calculated and experimental spray characteristics was carried out and the calculated results of GDI spray showed good agreement with experimental results.

Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine

  • Ryou, Hong-Sun;Lee, Seong-Hyuk;Ko, Gwon-Hyun;Hong, Ki-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.951-961
    • /
    • 2001
  • The present article presents an extension to the computational model for spray/wall interaction and liquid film processes that has been dealt with in the earlier studies (Lee and Ryou, 2000a). The extensions incorporate film spread due to impingement forces and dynamic motion induced by film inertia to predict the dynamic characteristics of wall films effectively. The film model includes the impingement pressure of droplets, tangential momentum transfer due to the impinging droplets on the film surface and the gas shear force at the film surface. Validation of the spray/wall interaction model and the film model was carried out for non-evaporative diesel sprays against several sources of experimental data. The computational model for spray/wall interactions was in good agreement with experimental data for both spray radius and height. The film model in the present work was better than the previous static film model, indicating that the dynamic effects of film motion should be considered for wall films. On the overall the present film model was acceptable for predication of the film radius and thickness.

  • PDF

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.