• 제목/요약/키워드: Spray Measurements

Search Result 187, Processing Time 0.022 seconds

Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate . (분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정)

  • 김영찬;유갑종;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF

A Case Study on the Measurement Volatile Organic Compounds and Total Hydrocarbon Concentrations in Block Paint-Shops at a Shipyard (조선소 블록 도장시설에서의 휘발성 유기화합물과 총 탄화수소 농도측정 사례)

  • Yang, Sung-Bong;Yu, Mee Seon;Woo, Kyung-Bin
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1177-1189
    • /
    • 2016
  • In order to prepare the information needed to construct a reduction system for volatile organic compounds (VOCs) exhausted from ship-block paint-booths in a giant shipyard, VOCs in paint-shop airs were analyzed and compared to the components in paint thinners. Aromatic hydrocarbons containing eight and nine carbon atoms are known to be major VOC compounds found in shipyard paint-shops. The total hydrocarbon (THC(C7)) concentrations calibrated using toluene gas, were measured in block paint-shops with two photo-ionization detector (PID) meters, and the resulting THC(C7) data were converted to THC(C1) concentrations according to the Standard Methods for the Measurements of Air Pollution in South Korea. THC(C1) concentrations near the spray site ranged from 10 to 2,000 ppm, but they were less than 400 ppm near the walls of the paint-booth. The measurements of THC concentrations, based on the height of the monitoring sites, were related to the height of the target to which the spray paints were applied. The maximum concentrations occurred at almost the same height as the spray targets. When painted blocks had been dried-by warming with no spraying, the THC concentrations were 80~100 ppm.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

Characteristics of Air-assist Spray Injected into Cross-flow with Various Gas-liquid Ratio (횡단유동으로 분사하는 이유체노즐의 기체-액체비에 따른 분무특성)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Lee, Hyo-Won;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The characteristic of air-assist spray injected into subsonic crossflow were studied experimentally. External-mixing air assist injector of Orifice nozzle with L/d of 3 were tested with various air-liquid ratio. Shadowgraph photography was performed for spray visualization and trajectory of spray measurements. The detailed spray structure was characterized in terms of SMD, velocity, and volume flux, using PDPA. Experimental results indicate that penetration length was increased and spray distribution was accelerated by increasing air-liquid ratio.

  • PDF

Characteristics of Spray from Pressure-Swirl Nozzle with Different Liquid Properties and Nozzle Geometries (액체의 물성치와 노즐의 형상 변화에 따른 압력스월 노즐의 분무 특성)

  • Choe, Yun-Cheol;Jeong, Ji-Won;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1813-1820
    • /
    • 2001
  • The purpose of this study was to investigate the significant characteristics in atomization process of industrial etching spray fur the design or Precise pressure-swirl nozzles. The experiment was carried out with different viscosities and densities of the liquid. The macro characteristics of liquid spray, such as the spray angle and breakup process were captured by PMAS and the micro characteristics of liquid spray. such as droplet size and velocity measurements were obtained by PDA. The droplet axial and radial velocity and SMD were measured along axial and radial direction. The RMS of two velocities was measured along radial direction. It was found that the fluid with higher kinematic viscosity resulted in the larger SMD and the lower mean droplet velocity. And we could divide breakup processes into three regions that is atomization, non-dilution and dilution one in spray of pressure-swirl nozzle. The radial as well as axial velocity of droplet played an important role in the atomization process of higher kinematic viscosity fluid.

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

A study on the Image processing method for the Measurements of Spray characteristics (분무특성 파악을 위한 이미지 프로세싱 기법 연구)

  • Jeon, Jae-Hyoung;Kim, Tae-Young;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.85-88
    • /
    • 2010
  • It is essential to understand the spray characteristics of injectors for the development of liquid rocket engine systems. In this study, the image processing methods for the measurement of the spray characteristics such as spray angle, breakup length and drop size of Gas-Centered Swirl Coaxial(GCSC) injectors have been investigated. The charge-coupled device (CCD) camera with a stroboscope was used to capture the spray images. It is to be hoped that this methods could contribute to acquisition of reliable and worthwhile data for the design of injectors. Moreover, this image processing method will be verified by comparison with other experimental results.

  • PDF

An experimental study on the atomizing characteristics of liquid column type coaxial sprays (액주형 동축노즐 분무의 무화특성에 관한 실험적 연구)

  • 노병준;강신재;오제하
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.41-53
    • /
    • 1992
  • The main purpose of this study is to investigate the atomizing characteristics of a two phase spray by using a liquid column type coaxial nozzle. The experiments have been carried out to analyze the atomization behavior, the droplet size distributions, and the statistical properties of droplet size distributions. Immersion sampling method and the image processing technique were adapted for the measurements of particles, and the distributions of the droplet sizes were statistically analyzed. In the experiments, the mass ratio defined as Mr= $M_{\sigma}$/ $M_{1}$ has been changed from 1.0 to 3.4 and the measurements have been performed along the axis of the spray. As a result of this experimental study, the distributions of droplet size were satisfied with the Log-Normal distributions and arithmetic mean diameter and deviation of mass ratio. Droplet volume-surface mean diameter was denoted by a exponential function of mass-ratio and the exponent was denoted by linear relation according to the central axis from the nozzle. Dispersions, skewness factors and flatness factors had comparatively constant values regardless of mass ratio and location.

  • PDF

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF