• Title/Summary/Keyword: Spray Measurements

Search Result 187, Processing Time 0.022 seconds

Effect of Internal Geometry of Nozzle on the Velocity and Droplet Size of Twin Spray (노즐이 내부형상이 이중분무의 유속과 입경에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1522-1527
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and swirl chamber aspect ration of nozzle on the characteristics of single and twin spray. The performances of nozzle has been investigated by measurements of spray angle, droplet size, velocity and Weber number at a water pressure 0.4MHz. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the smaller swirler angle, the larger axial velocity became. It was also shown that the larger aspect ratio, the smaller droplet diameter became.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.105-116
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2$,$O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2,\;O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Spray Behavior and Atomization Characteristics of Air-Assist Type Gasoline Fuel Injector (공기보조형 가솔린 연료 분사기의 분무거동 및 미립화 특성)

  • 노병준;강신재;김원태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 1998
  • To investigate the spray behavior and atomization characteristics using an air-assist injector, spray visualization and PDPA measurements were carried out under the various assisted air pressures and the fixed fuel pressure. The air assist pintle type injector employed in this study is consisted of the air assist adaptor and an injector housing using the gasoline fuel and air as the working fluids. As results, increasing pressure of assisted air, the growth of spray tip penetration is gradually reduced at the end of spray and spray angle is steadily increased at the main spray region except from the early spray. For the air assist pressure of 25㎪ in a spray downstream, it is doncluded that droplet size distribution shows the peak of 10${\mu}{\textrm}{m}$ and most of the droplet sizes are less than 50${\mu}{\textrm}{m}$. Also, the air-assist injector extremely improves fuel atomization in order to produce much finer droplets, it shows that approximately, in this case, 50% decreade of SMD than without air assit.

  • PDF

A Study on the Spray Atomization Characteristics of a Multi-Hole Diesel Nozzle using PDPA System (PDPA계측에 의한 다공 디젤 노즐의 분무 미립화 특성에 관한 연구)

  • Lee, J.K.;Oh, J.H.;Kang, S.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.45-54
    • /
    • 1999
  • The spray characteristics of a direct injection multi-hole diesel nozzle having the 2-spring nozzle holder were investigated by using the image processing system and a PDPA(phase Bowler particle analyzer) system. The spray tip penetration, the spray angle, and the droplet diameter and velocity with the variation of the pump speed, injection quantity were measured. From, the experiments, we know that there are small droplets which are not to be detected with spray image around the leading edge of the spray. In order to represent the mean characteristics of the intermittent spray very well, it is very important to set the time windows accurately. From the measurements along the axis of the spray, close to the nozzle, the initially injected droplets are overtaken by droplets that follow them. And also there are the maximum axial mean velocity and SMD at the following part of the leading edge of the spray.

  • PDF

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Experimental and Numerical Study on Behavior of Impinging Spray according to Ambient Temperature (분위기 온도에 따른 충돌 분무의 거동에 대한 실험 및 수치적 연구)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.124-131
    • /
    • 2007
  • The numerical study on behavior of impinging spray from high-pressure swirl injector under various ambient temperatures was performed by using spray vaporization model and spray-wall impingement model implemented in modified KIVA code, and these spray models were estimated by comparison with experimental results. To compute the spray-wall impingement process, the Gosman model, which is based on the droplet behavior after impingement determined by experimental correlations, was used. The modified Abramzon and Sirignano model, that includes the effects of variable thermodynamic properties and non-unitary Lewis number in the gas film, was adapted for spray vaporization process. The exciplex fluorescence measurements were also conducted for comparison. The experimental and numerical analysis were carried out at the ambient pressures of 0.1 MPa and at the ambient temperature of 293 K and 473 K, and the spray characteristics, such as spray-wall impingement process, gas velocity field, SMD and vapor concentration, were acquired. It was found that the impinging spray develops active and SMD is small at vaporization conditions.

Charge Distribution of Submicron Particles Charged by Spray Electrification or Corona Discharge (분무 및 코로나 방전에 의해 대전된 서브마이크론 입자의 대전량 분포)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jeong-Ho;Lee, Gyu-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.124-132
    • /
    • 2001
  • This paper reports on the charge distribution measurements of submicron particles for three different charging mechanisms, which are spray electrification, bipolar ionization and corona discharge process, respectively. The number of elementary charges per particle was investigated by classifying and counting of a discrete mobility class. Charge distribution measurements were performed with NaCl particles generated from a collision atomizer for 0.01, 0.1, 1% NaCl solutions. Experimental results show than charge level of atomized NaCl particles is high and decreases with increasing the dissolved ion concentration. The charge level of the atomized NaCl particles can be reduced to that o Boltzmann equilibrium conditions by the bipolar ionization(Po(sup)210 bipolar ionizer). The charge level on NaCl particles passing through the corona discharge reactor is much higher than those of atomized or bipolar ionized NaCl particles. The evaluation of these measurements results in charge distribution of the submicron particles.

APPLICATION OF CFD TECHNIQUE TO PERFORMANCE PREDICTION OF SPRAY CHARACTERISTICS OF WATER-MIST FIRE SUPPRESSION NOZZLES (미분무수 소화 노즐의 분무 특성 예측을 위한 CFD기법의 적용)

  • Chung, H.T.;Lee, C.H.;Cho, B.I.;Han, Y.S.;Ock, Y.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.56-61
    • /
    • 2006
  • Numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied for analyzing both the internal and external flow of the spray nozzles. Computations were made for the full cone nozzle in the operation range of the low pressure and high flow-rate. To validate the present computational procedure, numerical results are compared with measurements in terms of K-factor, SMD, axial spray velocity and spray angles. Numerical results suggested that the present numerical model can be used as an adequate tool for a design purpose of mist-spray nozzles.