• 제목/요약/키워드: Spray Droplets

검색결과 410건 처리시간 0.031초

액적의 리바운드 모션에 주목한 분무냉각 막비등 열전달 모델 (Film Boiling Heat Transfer Model of Spray Cooling Focusing on Rebound Motion of Droplets)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1317-1322
    • /
    • 2004
  • In this report, the heat transfer model of spray cooling on hot surface was developed by focusing on the effect of rebound motion of droplets. In the model, it was assumed that droplets rebound repeatedly on the hot surface and heat transfer upon droplet impact is proportional to sensible heat which heats up the droplets to the saturation temperature. In addition, to take account of the contribution of th heat flux upon impact of rebound droplets, it was assumed that the rebound droplets are distributed following the Gaussian distribution from 0 to L, which distance L is determined by maximum flight distance $L_{max}$. Also the calculated results were compared with existing experimental results.

  • PDF

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

과수원용 스프레이어의 농약 살포 및 비산 예측을 위한 전산유체해석 (CFD Modeling of Pesticide Flow and Drift from an Orchard Sprayer)

  • 홍세운;김락우
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.27-36
    • /
    • 2018
  • Effective pesticide applications are needed to assure the quality and economic competitiveness of fruit production and lower the risk of spray drift. Experimental studies have shown that better spray coverage and less driftability require an understanding of the transport of spray droplets within turbulent airflows in the orchard and the interaction between droplet dynamics and tree canopies. This study developed a computational fluid dynamics (CFD) model to predict pesticide flows in the orchard and spray drift discharged from an air-assisted orchard sprayer. The model represented the transport of spray droplets as well as droplets captured by tree canopies, which were modeled as a conical porous model and branched tree model. Validation of the CFD model was accomplished by comparing the CFD results with field measurements. Spray depositions inside tree canopies and at off-target locations were in good agreement with the measurements. The resulting data presented that 38.6%~42.3% of the sprayed droplets were delivered to the tree canopies while 13.6%~20.1% were drifted out of the orchard, part of them reached farther than 200 m from the orchard. The study demonstrates that CFD model can be used to evaluate spray application performance and spray drift potential.

가시용 직분식 디젤기관의 분무와 화염에 관한 연구 (A study on the spray and flame by optically accessible D.I. diesel engine : analysis by Schlieren method and diffused background illumination method)

  • 안수길;이덕보;라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.9-23
    • /
    • 1995
  • To analyze the spray and flame in D.I. diesel engine, the visualizing methods by schlieren photograph and diffused background illumination photograph with high speed camera are applied to optically accessible D.I.diesel engine. Wcaporating spray, spray droplets and brightness flame are taken with high speed camera by visuallizing method in accordance with various suction air temperature and injection time. The spray and flame image on the film was analyzed by image analyzer. The optically accessible D.I. diesel engine had the similar pressure characteristic to the real D.I. diesel engine. Experimental results showed that shadow areas of the evaporating spray were extended at higher suction air temperature, spray droplets had a max. Penetration length and their penetrating patterns were dependent on the surrounding gas temperature, and flame size after ignition was largely governed by the evaporated fuel quantity at ignition point and by the surrounding gas condition due to piston motion.

  • PDF

극초고압 디젤 자유분무의 미시적 분무특성에 관한 연구 (A Study on Microscopic Spray Characteristics of Free Spray of Diesel with Ultra High Pressure)

  • 정대용;이종태
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.7-12
    • /
    • 2005
  • In order to analyze the microscopic spray characteristics of free spray in ultra high pressure region, the droplets size and velocity of free spray injected under atmosphere condition were measured by PDPA. As injection pressure became ultra high pressure, the droplets size was decreased continuously due to the increase of mutual reaction between droplets and air. But the decreasing rate became moderate. The velocity was increased until 250 MPa, and then decreased over that of injection pressure. It was seemed that the droplet size was similar in range of $280\~350\;MPa$, but increased in 414 MPa, even though injection pressure was increased. The microscopic spray characteristics of free spray got worse in 414 MPa.

유체의 물성치 변화가 압력스월노즐 분무의 속도와 입경에 미치는 영향 (Effects of Different Fluid Properties on Velocity and Size of Droplets from Pressure-Swirl Nozzles)

  • 최윤철;손종원;차건종;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.909-914
    • /
    • 2001
  • Fluid properties which are most commonly used to evaluate spray atomization characteristics, are important because they affect velocity and size distribution of droplets. The purpose of this study was to incorporate the significant characteristics in atomization process of industrial etching spray and how each of them affects the design of precise pressure-swirl nozzles. The experiment was carried out with different viscosity and density of fluid. The macro characteristics of liquid spray, such as the spray angle and shape were captured by PMAS and the micro characteristics of liquid spray, such as droplet size and velocity were obtained by PDA. The mean velocity and SMD of droplets were measured along axial and radial direction. It was found that the higher viscosity and density resulted in the larger SMD and the lower mean velocity of droplets.

  • PDF

내부혼합형 이류체 분사노즐에서 발생한 분무내 액적들의 크기와 속도의 상관관계 (Correlation between size and velocity of drops in a spray from an internal mixing twin-fluid atomizer)

  • 김상진;히로야스 히로유키
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.27-33
    • /
    • 1998
  • Correlations of drop size and velocity in a spray from the disintegration of liquid jet and liquid film from an internal mixing twin-fluid atomizer, were determined by phase Doppler method. The distribution pattern of Sauter mean diameter(SMD) in a spray was changed by a behavior of liquid flow. As smaller droplets became faster and slower easily by the surrounding conditions, the correlation between drop size and mean velocity was found to be varied as next 3 steps; firstly smaller droplets have a higher mean velocity at the area near atomizer, droplets have almost the same mean velocity and finally larger droplets have a higher mean velocity at the area far from an atomizer.

  • PDF

간헐적으로 분사되는 핀틀형 가솔린 분사기의 액적크기와 속도 상관관계에 관한 연구 (A Study on the Correlation of Droplets Size and Velocity of the Pintle Type Gasoline Injector with Intermittent Injection)

  • 강신재;김원태
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.34-42
    • /
    • 1998
  • The correlation between the droplets size and the velocity are investigated for an intermittent spray of the pintle type fuel injector employed in a port injection gasoline engine. The analysis such as the mean droplet size, SMD, and velocity under the fixed injection period and varied fuel pressures are conducted utilizing PDPA systems. As results, the experimental data obtained, show that the larger droplet sizes. the higher velocities during the spray tip arrival time, and that at Z=70mm, r=8mm, both droplet sizes and velocities are peak. At the upstream, flow of droplets are dominated by injection pressure, which are more effected inertia force of droplets at the downstream of Z=70mm.

  • PDF

4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성 (The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors)

  • 김원태;강신재;노병준
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측 (Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas)

  • 이상균;조종철;조진호
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF