• Title/Summary/Keyword: Spray Behaviors

Search Result 134, Processing Time 0.021 seconds

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing (디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구)

  • 이창식;이기형;전문수;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

External Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무형상 연구)

  • Kim, K.H.;Choi, Y.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, breakup length and bubble behaviors of spray at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase injection pressure, deveopment of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by form a conical sheet like as the simplex swirl atomizer. As trying the analysis of the ratio of bubble length and width it was found that the ratios is comparable. Spray cone angle was nearly $90^{\circ}$.

  • PDF

An Experimental Study on the Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무특성에 관한 실험적 연구)

  • Kim K. H.;Choi Y. H.;Yoon S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.291-294
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, discharge coefficient and bubble behaviors of spray and SMD at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase of injection pressure, development of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by surface tension forces, the bubble opens into hollow tulip shape, and the curved surface straightened to form a conical sheet like as the simplex swirl atomizer. Spray cone angle was nearly 90 deg. Variations of SMD were examined in order to describe the dependency of SMD on the injection pressure and orifice diameter. The shape of deflector and oriffice diameter had an effect on the discharge coefficient.

  • PDF

Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process (분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰)

  • Kim, Myung-Ho;Bae, Cha-Hurn;Jeong, Hae-Young;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.

Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System (분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션)

  • Wang, W.K.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF

Effect of the Pressure and the Flow Pattern in a Sac Chamber of a Diesel Injection Nozzle on the Issued Spray Behaviors (디젤 연료분사노즐 색크실내의 압력과 유동패턴이 분류의 분열거동에 미치는 영향)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of the internal flow in a diesel injection nozzle on the atomization of the spray has been investigated experimentally. Flow visualization was made using a transparent acrylic model nozzle. And also, measurement of the sac chamber pressure was made for clartfying the effect of pressure fluctuation in the sac chamber on the wpray behaviors. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as the actual nozzle. Polystyrene tracers, a laser sheet light and a still/high speed video camera were used to visualize the flow pattern in the sac chamber. When the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray large. Cavitation which arose in the sky chamber induced the pressure fluctuation and then affects the spread angle of the spray.

  • PDF

A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes (노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구)

  • Baik, Jae-Sang;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF