• Title/Summary/Keyword: Spray

Search Result 5,318, Processing Time 0.032 seconds

Definition and Correlation for Spray Angle in Non-Reacting Diesel Fuel Sprays

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.244-250
    • /
    • 2006
  • Of the macroscopic spray characteristics of non-reacting diesel fuel sprays, the spray angle reflects directly the atomization and air entrainment processes downstream the nozzle. In addition, spray angle is important because it will be closely related to the spray penetration. The existing definitions for the measurement of spray angle as well as the correlations for the prediction of spray angle are, therefore, summarized and reviewed. The existing definition of spray angle can be classified into four groups: distance based on orifice diameter, distance based on spray tip penetration, definition based on surface wave, and definition based on atomization. It is strongly required to specify the definition and measurement method when the data for spray angle is reported. The existing correlations for spray angle can be classified into two groups: theoretical and empirical correlations. The study on the evaluation of the existing correlations fer spray angle is required.

  • PDF

An Experimental studies Spray characteristic of Pintle type Nozzle on High Pressure Chamber (고온.고압용기에서의 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;오은탁;류호성;안병규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.67-73
    • /
    • 2002
  • The characteristics of fuel spray influence on the engine performances such as power, fuel economy and emissions. therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factor which controls the fuel spray is injection pressure, ambient pressure, engine speed et al.. In :his study, We measured spray angle, spray penetration and spray tip velocity considering injection pressure(10,14㎫), ambient pressure(3,4,5㎫), fuel pump speed(500,700,900rpm) in the high temperature and pressure chamber. Experimental results are summarized as follows: 1) Injection pressure influence on the characteristics of spray namely As Injection pressure Is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle, spray penetration is increased by increasing the fuel pump speed. 3) Ambient pressure plays an important role in spray characteristics.

  • PDF

Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure (분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구)

  • Park, Jeonghyun;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber (고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

Spray Characteristics in CI Engines Fuelled with Vegetable Oils and Its Derivatives

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.15-26
    • /
    • 2011
  • In this article, spray characteristics in CI engines fuelled with vegetable oils and its derivatives will be reviewed. Of edible vegetable oils, soybean oil and rapeseed oil were mainly investigated. Of inedible vegetable oils, jatropha oil and used frying oil were main concern on the research on the spray characteristics in CI engine. Spray angle and spray penetration were mainly examined among the macroscopic spray characteristics and Sauter mean diameter was only investigated among the microscopic spray characteristics. There exist six different definitions of spray angle which should be examined. Neat vegetable oil and biodiesel fuels show smaller spray angle than diesel fuel. Biodiesel fuel and vegetable oils and its blend have a longer spray penetration than diesel fuel. However, biodiesel blends with diesel shows the similar spray penetration with diesel fuel. SMDs in the biodiesel spray, vegetable oils and its blends spray are higher than that in the diesel spray.

An Effect of Pressure and Temperature on Spray Characteristic (분무특성에 미치는 압력.온도의 영향)

  • Oh, Eun-Tak;Ryu, Ho-Sung;Ahn, Byoung-Kyu;Song, Kyu-Keun;Jung, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.946-951
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of a pintle nozzle. High speed camera used in this expreiment with 9000fps. The factor, which controls the diesel spray, is the Injection pressure, ambient pressure and ambient temperature. In this paper, experiments were conducted free spray for the ambient pressure(3, 4, 5Mpa), nozzle Injection pressure(10, 14, 18MPa) and ambient temperature(293, 473K). With the higher opening pressure, the spray tip velocity and spray penetration increases while the spray angle decreases, On the other hand, With the higher ambient pressure, the spray angle increase while the spray tip penetration and spray tip velocity decrease. also, With the higher ambient temperature, the spray penetration decrease while the spray angle decrease.

  • PDF

A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis (분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구)

  • Park, Jeonghyun;Cho, Hanbin;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Experimental Study on the Macroscopic Spray Characteristics of DME Fuel (DME 연료의 거시적 분무특성에 관한 실험적 연구)

  • Park, Jeong-Hwan;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2010
  • The purpose of this study is to compare and to investigate spray characteristics of dimethyl ether (DME) and diesel fuel in the various injection pressures, ambient pressures, and the energizing durations. For the analysis of the spray characteristics, the spray visualization system including the high speed camera and the spray image analyzer is installed. The spray characteristics such as the spray development process, spray tip penetraion and the spray cone angle are analyzed from the spray images. It was revealed that the spray characteristics of DME and diesel fuels are mainly affected by the injection conditions. However, in the region after the end of the injection, the spray tip penetration was affected by the fuel properties such as the fuel density, the surface tension, and the viscosity. DME fuel has generally a short tip penetration and a wide cone angle. In the elevating conditions of the ambient gas pressure, the spray cone angle of DME fuel converged to high value when comparing diesel fuel in advance. Also, the increasing rate of the spray tip penetration in DME fuel is significantly decreased from 0.7 ms of the energizing duration (diesel : 0.9 ms).

Experimental and Numerical Study on Effects of Wall Impingement on Spray and Combustion Characteristics in a Diesel Engine

  • Liu, Yu;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.140-149
    • /
    • 2010
  • The spray-wall impingement in diesel engines is important to mixture preparation, engine performance and pollutant emissions. The purpose of this paper is to study the effects of spray-wall impingement on fuel distribution, combustion and emission characteristics by using both experimental and numerical methods. To investigate the spray-wall impingement process, an impingement-chamber was designed and a visualization experiment system was also developed. The images of impinged spray and free spray were digitally recorded with an intensified CCD camera. To investigate the fuel distribution, combustion and emission characteristics of impinged spray in a real diesel engine, the fuel injection and combustion processes of an engine with impingement-chamber were simulated by CFD software. Equivalence ratio distribution results were obtained to understand the fuel distribution characteristics of the impinged spray. Some combustion and emission characteristics were also acquired and the results showed that ignition delay of impinged spray was shorter than that of free spray; NO emission of the impinged spray was significantly less than that of free spray, but soot emission of impinged spray was more than that of the free spray. This study found that the diesel engine with spray-wall impingement has significant potential to reduce NO emission.