• Title/Summary/Keyword: Spot on the Body

Search Result 196, Processing Time 0.026 seconds

Experimental Study on Spot Weld and Plug Weld of Automotive Body Panel (자동차 차체 패널의 점용접 및 플러그용접 특성에 대한 실험적 분석)

  • Kwon, Jongho;Kim, Janghoon;Lee, Yongwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.709-715
    • /
    • 2016
  • This paper presents a comparison of an experimental study on spot and plug welding of an automotive body panel. Spot welding is a common joining technology used in automotive body panel assembly. In automotive body repair, however, plug welding is widely used due to its technical simplicity and cost benefit. Some researchers have focused on the use of spot welding in the manufacturing process, but there has been very little research done with respect to the engineering analysis of the plug welding process. In this study, two kinds of specimens are considered to compare the difference of failure strength between spot weld and plug weld: normal tension and shear tension. The experimental results show, in both normal tension and shear tension, that spot welding has higher failure strength than plug welding. In addition, plug welding is more vulnerable to shear tension than normal tension. This study can be applied to further studies on practical optimization for maintenance and repair of automotive body panels.

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Development of electrode tips for spot welding to reduce indentation of car body surface of stainless rolling stocks (스텐레스 철도차량 외판 압흔 깊이 감소를 위한 스폿용접용 전극팁 개발)

  • 서승일
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.386-391
    • /
    • 2002
  • Stainless rolling stocks are usually fabricated by spot welding process without painting. Indentation on the surface of the car body after spot welding injures the beauty of the stainless rolling stocks. In this study, electrode tips to reduce the indentation are developed and applied to the actual spot welding works. The developed tips are composed of head, nut hole far cooling water, body and resistance material. They provide large surface contact area with the base materials during spot welding and enhance the current density by necking. Experimental results using the developed tips show that small indentation and sufficient tensile shear strength is produced due to large contact area and enhanced current density.

  • PDF

A Study on the Development of Insulated Electrode Tip for Spot Welding to Reduce Indentation (점용접 시 압흔 깊이 감소를 위한 절연팁 개발에 관한 연구)

  • 서승일;장상길
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • Stainless rolling stocks are usually fabricated by spot welding process without painting. Indentation on the surface of the car body after spot welding injures the beauty of the stainless rolling stocks. In this study, insulated electrode tips to reduce the indentation are developed and applied to the actual spot welding works. The developed tips are composed of head, neck, hole for cooling water, body and resistance material. They provide large surface contact area with the base materials during spot welding and enhance the current density by necking. Experimental results using the developed tips show that small indentation and sufficient tensile shear strength is produced due to large contact area and enhanced current density.

A fracture mechanics evaluation on the fatigue crack propagation at spot welded aluminum joint in passenger car body (스폿용접된 자동차 차체용 알루미늄 박판의 피로균열진전의 파괴역학적 평가)

  • 박인덕;남기우;강석봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 1997
  • The fatigue crack propagation properties and fatigue life of two kinds of Al body panel for automobile were examined experimentally by using the plate specimen and the single spot welding specimen. The fatigue limit of spot welding specimens was lower than that of a plate specimen. The fatigue limit was similar in two kinds of spot welding specimen. The shape and size of crack propagation were observed and measured on beach mark of fracture surface. The crack propagation of surface crack specimen showed almost same tendency to that of a thick plate as almost semi-elliptical. In spot welding specimen, the fatigue crack occurred in inside surface of nugget area was almost semi-elliptical. The crack growth rate can be explained using equation of stress intensity factors.

  • PDF

Effect of mixing with non-familiar piglet on change of body temperature (이복자돈과의 체중별 합사가 자돈의 체온변화에 미치는 영향)

  • Kim, Kwang-Sik;Cho, Eun-Seok;Kim, Young-Hwa;Kim, Jo-Eun;Seol, Kuk-Hwan;Kim, Ki-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.231-235
    • /
    • 2015
  • This study was performed to investigate the change of the body surface temperature during socialization of weaning pigs. A total of 108 piglets (Landrace 60 and Yorkshire 48) aged 31 (${\pm}1.1$) day was used for this study. Experiment was designed as follows; familiar group (T1), randomly mixed with unfamiliar piglets (T2), mixed based on weight of unfamiliar piglet (T3). The transport and mixing of pigs were performed at 10:00, and then body surface temperature was taken by thermo-graphic camera after 4 hours (14:00). Average surface temperature and hot-spot-temperature, which is the hottest spot of the body surface, were analyzed using Testo IRsoft 3.1 software. Average temperature of body surface were 36.0, 38.2, and 37.5 in T1, T2, and T3, respectively. Average of body surface temperature in T2 and T3 were higher (p<0.001) than T1, and average temperature of body surface of T3 was greater (p<0.001) than that of T2. The hot-spot-temperature of T1, T2, and T3 were 38.7, 39.5, and 39.6, respectively. The hot-spot-temperature of T2 (p<0.01) and T3 (p<0.001) were significantly higher than that of T1. Above results demonstrate that grouping unfamiliar pigs leads to increase in the body temperature possibly by pigs aggressive behavior during social conflict. By the result on average body temperature, this study suggests that the mixing with similar body weight would increase the struggle time and frequency.

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

The study on the influences of vibration associated with cycling on the human body (자전거 주행 중 발생하는진동이 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Kim, Sa-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.643-646
    • /
    • 2009
  • This study was conducted to simulate the influence of vibration associated with cycling on the body. In this simulation the human model that the riding on a bicycle which have suspension and non-suspension front forks was used. And to arouse impact two kind of bump, 50mm height of radical raised spot and 150mm height of slow raised spot, were used. The vertical displacement of head, the vertical acceleration of head and the torque of neck joint were analysed. The results say that the function of shock absorbing was grater when passing though a 50mm height of radical raised spot then a 150mm height of slow raised spot.

  • PDF

Joining of Zinc Coated Steel and Aluminum Alloy for Car Body (자동차용 아연 도금 강판과 알루미늄 합금의 접합)

  • Lee, Woo-Ram;Lee, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • There is problem to reduce the car body weight for improving fuel consumption and $CO_2$ generation. As one of the solution, the multi material car body concept using aluminum alloys and high strength steels is proposed recently. Therefore, new welding processes by which these dissimilar material can be joined in high reliability and productivity are demanded. Laser spot welding was developed for joining of dissimilar metals. In the present work, Laser spot welding of zinc coated steel and aluminum alloy was investigated, and the process parameters were studied. Otherwise, the influences of process parameters on the weldability, the formation of intermetallic compound layer and the mechanical properties have been investigated. When intermetallic compound layer thickness was more than 1mm, specimen was failure in the interface.

A Study on Optimal Spot-weld Layout Design of the Vehicle Body Structure Considering Vibration and Side Impact (진동특성 및 측면충돌 성능을 고려한 차체의 점용접 치수 최적화 연구)

  • Shin, Gyung Ho;Lee, Jun Young;Park, Hong Ik;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.750-755
    • /
    • 2012
  • In this study we conduct the optimal spot-weld layout design of vehicle body structure considering dynamic stiffness and side impact. We conduct both linear static analysis and nonlinear analysis with a baseline model to verify the process. 13 design variables will be selected for the effect analysis. Then, topology optimization is conducted to each selected design variable. The design constraints are formulated to improve the dynamic stiffness and side impact performance. Objective function is to set the density of weld component. Optimal spot-weld layout design are compared with the baseline model to show the improvement.

  • PDF