• Title/Summary/Keyword: Spot Welded

Search Result 267, Processing Time 0.02 seconds

Design optimization of spot welded structures to attain maximum strength

  • Ertas, Ahmet H.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.995-1009
    • /
    • 2015
  • This study presents design optimization of spot welded structures to attain maximum strength by using the Nelder-Mead (Simplex) method. It is the main idea of the algorithm that the simulation run is executed several times to satisfy predefined convergence criteria and every run uses the starting points of the previous configurations. The material and size of the sheet plates are the pre-assigned parameters which do not change in the optimization cycle. Locations of the spot welds, on the other hand, are chosen to be design variables. In order to calculate the objective function, which is the maximum equivalent stress, ANSYS, general purpose finite element analysis software, is used. To obtain global optimum locations of spot welds a methodology is proposed by modifying the Nelder-Mead (Simplex) method. The procedure is applied to a number of representative problems to demonstrate the validity and effectiveness of the proposed method. It is shown that it is possible to obtain the global optimum values without stacking local minimum ones by using proposed methodology.

The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis - (아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립-)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

Application of ESPI to Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate

  • Baek, Tae-Hyun;Kim, Myung-Soo;Na, Eui-Gyun;Koh, Seung-Kee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.41-46
    • /
    • 2003
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has the advantage of being able to measure surface deformations of engineering components and materials in industrial areas without contact. The speckle patterns formed with interference and scattering phenomena can measure not only the out-of-plane but also the in-plane deformations. Digital image equipment processes the information included in the speckle patterns and displays the consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate, analyzed by 4-step phase shifting method, are close to the theoretical expectation. Similarly, out-of-plane displacements of a spot welded canti-levered plate were also measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Fracture Characteristics of the Resistance Spot Welded Joints by Acoustic Emission (음향방출법에 의한 저항 점용접부의 파괴특성에 대한 연구)

  • Jo, Dae-Hee;Rhee, Zhang-Kyu;Park, Sung-Oan;Kim, Bong-Gag;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.14-22
    • /
    • 2007
  • In this paper, the acoustic emission(AE) behaviors were investigated with single-and 2-spot resistance spot welded SPCC specimens. Test specimens were welded horizontally and/or vertically according to the rolling direction of base netal in 2-spot welding. In the case of 2-spot welding, when tensile-shear test has below amplitudes: crack initiation $50{\sim}60dB;$ tear fracture $40{\sim}50dB$. And when cross tensile test has below amplitudes: early stage $75{\sim}85dB;$ yielding point $65{\sim}75dB;$ post yielding $40{\sim}60dB;$ plug fracture $70{\sim}80dB\;or\;90{\sim}100dB$. Also, from the b-value that is slope of AE amplitude, we knew that there are lots of low amplitudes if b-value is big(i.e., tensile-shear $specimen{\rightarrow}tear$ fracture or shear fracture), and there are lots of high amplitudes if b-value is small(i.e.. cross tensile $specimen{\rightarrow}plug$ fracture). As the results of fiacture mechanism analyses through AE amplitude distributions, change of the b-value represented fracture patterns of materials. Correspondingly, low amplitude signals appeared in crack initiation, and high amplitude signals appeared in base metal fracture. We confirmed that these amplitude distributions represented the change or degradation of materials.

A Study on Vibration Characteristics of Plate Structures Spot-Welded with respect to Area Ratio and Distance Ratio (점용접된 판 구조물의 면적비와 거리비에 따른 진동특성 연구)

  • Han, Dong-Seop;Ahn, Sung-Chan;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • In this Paper, the mechanical behavior of two reかangular plates spot-welded under free vibration is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this the investigation are compared with detailed finite element analysis end experiments of the plates spot-welded for various parameters, such as aspect ratio, arm ratio, and distance ratio of spot-welding Points. The conclusion obtained are as followed. 1. The effect thickness due to spot-weld is very large, such as 55% in comparison with area ratio of spot-welding joint is just 4.52%. 2 The effect of thickness with respect to the distance ratio is maximized when the distance ratio is 0.4.

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF