• Title/Summary/Keyword: Spot welding

Search Result 660, Processing Time 0.034 seconds

Effects of electrode tips on the weldability of galvannealed steel (Galvannealed steel의 점 용접성에 미치는 전극 팁의 영향)

  • 유병길;강춘식
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.11-18
    • /
    • 1987
  • Effects of electrode tips shapes of spot welding on the galvannealed steel have been studied, and the results obtained from this studies are as follows. 1) Expulsion had no effect on the shear strength of the specimen but been observed on the tensile strength of the specimen. 2) Effect of holding time after welding was neglegible when the spot welding supplies enough heat input. 3) Depending on the sopt welding tip shape it has different weldbility. It has better weldability in the order of pointed shape, truncated shape and dome shape. But the effect of coolind was just the opposite of the above order.

  • PDF

Fatigue Life Evaluation of Spot Weldment Using DCPDM (직류전위차법을 이용한 점용접부의 피로수명 평가)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Transient Temperature Drstributions in a Adiabatic Plate Due to Resistance Spot Welding (저항점용접(抵抗點熔接)에 따른 과도적(過渡的) 냉각(冷却) 온도이력(溫度履歷))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 1972
  • As the technique of resistance spot welding became more and more advanced the factors hitherto considered secondary become more and more important. Among these factors the distribution of heat and temperature during resistance spot welding is particularly important in conjunction with thermal stress, strain and residual stress, strain problems. The analytical investigations upon the transient temperature due to resistance spot welding were made for the carbon steel plate and aluminum alloy plate. The numerical values obtained by the analytical investigation are nearly identical with the temperature distribution which obtained by D.J. Sullivan and some other experimental data. It was thought therefore useful to estimate the heat effect upon the material such as a residual stress and strain, metalurgical change, change in physical properties and etc.

  • PDF

CRUSHING CHARACTERISTIC OF DOUBLE HAT-SHAPED MEMBERS OF DIFFERENT MATERIALS JOINED BY ADHESIVE BONDING AND SELF-PIERCING RIVET

  • Lee, M.H.;Kim, H.Y.;Oh, S.I.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.565-570
    • /
    • 2006
  • The development of a light-weight vehicle is in great demand for enhancement of fule efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as aluminum and magnesium. However, if such materials are used in vehicles, there are often instances when different materials such as aluminum and steel need to be joined to each other. The conventional joining method, namely resistance spot welding, cannot be used in joining different materials. Self-piercing rivet(SPR) and adhesive bonding, however, are good alternatives to resistance spot welding. This paper is concerned with the crushing test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding. Various parameters of crashworthiness are analyzed and evaluated. Based on these results, the applicability of SPR and adhesive bonding are proposed as an alternative to resistance spot welding.

Optimal control of resistance spot welding process (저항 점 용접공정의 최적제어)

  • 장희석;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.370-373
    • /
    • 1988
  • Althouah there have been many attempts to control weld quality in resistance spot welding processes, design method for an on-line feedback controller based upon process dynamics has not been suggested. This is due to the fact that the resistance spot welding is a highly complicated process, whice involves the interaction of electrical, thermal, mechanical and metallurgical phenomena. In this paper, an optimal control method based on FDM model with shunt effect is presented, which can regulate the nugget size, at the same time minimizing the control heat input. Optimal PI gain of the controller were determined by numerical optimization. Simulation results show that, as a result of the proposed optimal control, the weld nugget can be made to approach a desired nugget size with less control heat input than that required for the conventional spot welding process in the face of the shunt effect.

  • PDF

The Effects of Tail Contact for Spot Welding Peel-tension Specimen (점용접 박리-인장 시험편의 후면접촉 영향)

  • 이용복;정진성;박영근;최지훈
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 1999
  • Spot welding has been used in the sheet metal joining processes because of its high productivity and convenience. In this study, predicting methods of fatigue life of spot welded joint have been investigated and fatigue and static tests were conducted with the peel-tension specimens using cold rolled steel plate(SPCC). Fatigue life of peel-tension spot welded joint was influenced by tail effect. Fatigue life evaluation using modified stress index parameter, considering the effective eccentric length, can predict the life more exactly than conventional stress index parameter.

  • PDF

Analysis on Durability Performance of Spot Welding by the Status of Over-Slam Bumper in Hood System (후드 오버슬램범퍼 조립 상태에 따른 점용접의 내구성능 영향 분석)

  • Lee, Hyuk
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • Purpose: Recently, Issues on security for vehicles are getting increased all around the world. Especially, hood panel needs to be thinner for the protection of pedestrians. But thinner panel makes durability get worse. So, it is needed to satisfy both of them. Methods: Durability effectiveness will be studied because properties and assembly allowance of over-slam bumper mostly affects durability of hood panel. Overlap of over-slam bumper can be made in production line and it can affect durability of spot welding in hood inner panel. Daguchi method is used to catch the condition in which load gets smaller and location, hardness and quantity of overlap are selected to be factors. Durability effectiveness is analyzed with the factors. Result: the mechanism that affects on spot welding is identified. The test was conducted in both open/close and driving condition and the relation between both conditions is analyzed. Conclusion: The test contributed to durability of hood panel with optimization of over-slam bumper.

A Comparative Study of Weldable Current Range on AC and MFDC Resistance Spot Welding for 440 MPa Grade Steel Sheet (440 MPa급 도금강판의 저항 점 용접 시 AC 및 MFDC전원에 따른 가용전류구간 비교 연구)

  • Ji, Changwook;Park, Chansu;Kim, Chiho;Cho, Yongjoon;Oh, Dongjin;Kim, Myung-Hyun;Kim, Yang-Do;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • This paper presents a comparative study of the AC and MFDC resistance spot welding process with consideration of sheet thickness. The previous studies have confirmed that there is difference in the optimum welding current and expulsion current with AC and MFDC. The aim of this study was revealing the effect of sheet thickness on weldable current range and expulsion behavior for AC and MFDC welding processes. The optimum welding current of AC was lower (1.6 kA) than MFDC welding process in 0.8 mm sheet thickness. Early nugget growth being caused by the peak current of AC developed weld interface deformation, which resulted in suppressing the growth of corona bond and occurrence of low current expulsion. The resistance spot welding for thicker sheet (1.4 mm) required lower current of 0.6 kA for the expulsion on the MFDC welding process. The growth of contact diameter (size of corona bond) and button diameter was linear up to the expulsion current with MFDC welding process. Therefore, more attention is required when the AC and MFDC resistance spot welding process is applied for different thickness of steel sheet combination for automotive application.