• Title/Summary/Keyword: Sports Simulator

Search Result 17, Processing Time 0.021 seconds

A Study on XR Handball Sports for Individuals with Developmental Disabilities

  • Byong-Kwon Lee;Sang-Hwa Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.31-38
    • /
    • 2024
  • This study proposes a novel approach to enhancing the social inclusion and participation of individuals with developmental disabilities. Utilizing cutting-edge virtual reality (VR) technology, we designed and developed a metaverse simulator that enables individuals with developmental disabilities to safely and conveniently experience indoor handicapped handball sports. This simulator provides an environment where individuals with disabilities can experience and practice handball matches. For the modeling and animation of handball players, we employed advanced modeling and motion capture technologies to accurately replicate the movements required in handball matches. Additionally, we ported various training programs, including basic drills, penalty throws, and target games, onto XR (Extended Reality) devices. Through this research, we have explored the development of immersive assistive tools that enable individuals with developmental disabilities to more easily participate in activities that may be challenging in real-life scenarios. This is anticipated to broaden the scope of social participation for individuals with developmental disabilities and enhance their overall quality of life.

Design and Implementation of Real-Time Simulator for Multiple Object Detection and Tracking in Sports Video (스포츠 동영상의 다중 물체 인식 및 추적을 위한 실시간 시뮬레이터 설게 및 구현)

  • Hyun-Soo Kim;Shao-Hu Peng;Deok-Hwan Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • 동영상의 다중 물체 인식 및 추적은 의료영상이나 무인 주행 시스템 등의 응용분야에서 중요성이 높아지고 있다. 본 논문에서는 스포츠 동영상의 다중 물체를 인식 및 추적하기 위해 칼만필터 알고리즘을 사용한다. 칼만필터 알고리즘을 이용한 물체의 이동 궤적 관리를 통해 표적 겹침 현상에 대한 추적 실패를 극복하도록 하였다. 표적 겹침이 일어나는 동영상을 입력 영상으로 이용하여 제안한 실시간 시뮬레이터의 추적 성능을 분석하였다.

Analysis of EMG Patterns during Ski Jumping using Training Simulator - Case Study for Ski Jumping Youth National Athletes - (훈련 시뮬레이터를 이용한 스키점프 도약 시 발생되는 EMG 패턴 분석 - 스키점프 유소년 국가대표 사례 연구 -)

  • Kim, Heungsoo;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • Objective: The purpose of this study was to verify the effectiveness among simulating ski jumping trainings by comparing with actual ski jump. Method: Three healthy youth national athletes were recruited for this study (age: 13.70 ± 0.9 yrs, height: 169.30 ± 0.9 cm, jumping caree: 5.3 ± 0.9 yrs). Participants were asked to performed ski jumping with 3 simulating and one actual situation. A 3-dimensional motion analysis with 5 channels of EMG was performed in this study. Muscle activations of Rectus Femoris [RF], Tibialis Anterior [TA], Thoracis [TH], Gluteus maximus [GM], and Gastronemius [GL] were achieved with sampling rate of 2,000 Hz during each jump. Results: In the case of S1 in the actual jumping motion, the deviation of the muscle activity peak did not appear each trial, and the jump timing was consistent. For S2, the timing of the muscles peak activation which can maintain the posture of the upper body and ankles appeared at the beginning. In the case of S3, the part maintaining the ankle posture at the beginning appeared, but it could be expected that it would progress in the vertical direction due to the activation of GL at the time of jumping. Conclusion: The muscle activation peak before the take-off point showed a different pattern for each athlete, and individual differences were large. In addition, it was attempted to confirm the actual jump with simulation jump, and it was found that not only the difference in patterns but also the fluctuations in the timing of each muscle activation peak were large.

Comparisons of Kinematic Factors and Stiffnesses of the Lower-limb Joints between Transfemoral Amputees and Normal Adults (대퇴절단자와 정상인 걸음걸이의 운동학적 요인과 발목관절 강성 비교)

  • Yi, Jae-Hoon;Lee, Jung-Ho;Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • The purpose of this study was to compare kinematic variables and stiffnesses of ankle joints between normal person and transfemoral amputee gait in order to develop or fit prosthetic leg. Twenty subjects (ten normal persons and ten transfemoral amputees) participated in this experiment, and walked three trials at a self-selected pace. The gait motions were captured with Vicon system and variables were calculated with Visual-3D. The velocity, stride length, stride width, cycle time, double limb support time and right swing time of gaits were statistically significant. Because coefficients of variability of normal persons on velocity, double limb support time and swing time were greater than transfemoral amputees, normal persons controlled these gait variables effectively. The stiffnesses of ankle joints were not statistically significant, but patterns of stiffnesses of ankle joints during three rockers were absolutely different. The negative correlations between stiffnesses of ankle joints and cycle time and swing time were presented. These differences suggest that developing and fitting prosthetic leg were demanded. Further studies should develop fitting program and simulator of prosthetic leg.

A Research on the Design and Implementation of LED Display-based Light Gun Systems

  • Byong-Kwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.85-91
    • /
    • 2024
  • With the current surge in leisure sports activities involving firearms and the costly shooting practices in the military, there's a growing interest in using virtual reality as a cost-effective alternative. This study proposes a system that addresses the drawbacks of existing shooting practice setups, such as dim spaces and high installation costs, by making it feasible on large display screens. The system integrates IR receivers and guns for practice, ensuring usability and efficiency through an application. Additionally, an accuracy adjustment feature enhances precise coordination recognition. As a result, this cyber light gun system offers an affordable solution for outdoor training.

Monocular Vision-Based Guidance and Control for a Formation Flight

  • Cheon, Bong-kyu;Kim, Jeong-ho;Min, Chan-oh;Han, Dong-in;Cho, Kyeum-rae;Lee, Dae-woo;Seong, kie-jeong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.581-589
    • /
    • 2015
  • This paper describes a monocular vision-based formation flight technology using two fixed wing unmanned aerial vehicles. To measuring relative position and attitude of a leader aircraft, a monocular camera installed in the front of the follower aircraft captures an image of the leader, and position and attitude are measured from the image using the KLT feature point tracker and POSIT algorithm. To verify the feasibility of this vision processing algorithm, a field test was performed using two light sports aircraft, and our experimental results show that the proposed monocular vision-based measurement algorithm is feasible. Performance verification for the proposed formation flight technology was carried out using the X-Plane flight simulator. The formation flight simulation system consists of two PCs playing the role of leader and follower. When the leader flies by the command of user, the follower aircraft tracks the leader by designed guidance and a PI control law, and all the information about leader was measured using monocular vision. This simulation shows that guidance using relative attitude information tracks the leader aircraft better than not using attitude information. This simulation shows absolute average errors for the relative position as follows: X-axis: 2.88 m, Y-axis: 2.09 m, and Z-axis: 0.44 m.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.