• Title/Summary/Keyword: Sports Mining

Search Result 37, Processing Time 0.021 seconds

A Time Series Analysis of Urban Park Behavior Using Big Data (빅데이터를 활용한 도시공원 이용행태 특성의 시계열 분석)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • This study focused on the park as a space to support the behavior of urban citizens in modern society. Modern city parks are not spaces that play a specific role but are used by many people, so their function and meaning may change depending on the user's behavior. In addition, current online data may determine the selection of parks to visit or the usage of parks. Therefore, this study analyzed the change of behavior in Yeouido Park, Yeouido Hangang Park, and Yangjae Citizen's Forest from 2000 to 2018 by utilizing a time series analysis. The analysis method used Big Data techniques such as text mining and social network analysis. The summary of the study is as follows. The usage behavior of Yeouido Park has changed over time to "Ride" (Dynamic Behavior) for the first period (I), "Take" (Information Communication Service Behavior) for the second period (II), "See" (Communicative Behavior) for the third period (III), and "Eat" (Energy Source Behavior) for the fourth period (IV). In the case of Yangjae Citizens' Forest, the usage behavior has changed over time to "Walk" (Dynamic Behavior) for the first, second, and third periods (I), (II), (III) and "Play" (Dynamic Behavior) for the fourth period (IV). Looking at the factors affecting behavior, Yeouido Park was had various factors related to sports, leisure, culture, art, and spare time compared to Yangjae Citizens' Forest. The differences in Yangjae Citizens' Forest that affected its main usage behavior were various elements of natural resources. Second, the behavior of the target areas was found to be focused on certain main behaviors over time and played a role in selecting or limiting future behaviors. These results indicate that the space and facilities of the target areas had not been utilized evenly, as various behaviors have not occurred, however, a certain main behavior has appeared in the target areas. This study has great significance in that it analyzes the usage of urban parks using Big Data techniques, and determined that urban parks are transformed into play spaces where consumption progressed beyond the role of rest and walking. The behavior occurring in modern urban parks is changing in quantity and content. Therefore, through various types of discussions based on the results of the behavior collected through Big Data, we can better understand how citizens are using city parks. This study found that the behavior associated with static behavior in both parks had a great impact on other behaviors.

The analysis of game outcomes based on UIPM shooting match data in the modern pentathlon (UIPM 세계대회 기록을 통한 근대5종 사격 유형 및 특성 비교)

  • Park, Jong-chul;Lee, Seung-Hun
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • The purpose of this study is to collect official world records for a total of five years from 2015 to 2019 from the modern pentathlon world competition database to reveal the impact of shooting types and characteristics on the record. To that end, the entire shooting spree was analyzed for all male and female athletes participating in the UIPM Level 1 World Cup and World Championships. According to the study, the number of round trips and the number of cars increased, the number of shooting accumulation deteriorated, the best record in the first round trip 3rd round, and the worst record in the fourth round trip 5th round. In addition, the deviation values are accumulated according to the fire recording or without success of the first step round trip by 9 percent in accordance with the growing number of the deviation is an increasing trend is, is that over time. Modern pentathlon at the success of the first step is more important and as fire can just hit first step in the event of great effect in reducing record. Based on these studies, the factors and characteristics that affect shooting accuracy are identified, and follow-up research linked to track records is necessary to match the characteristics of the combined competition.

Analysis of Waterpark Status and Recognition Using Big Data Analysis (빅데이터 분석을 활용한 워터파크 현황 및 인식 분석)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.525-535
    • /
    • 2017
  • The purpose of this study aims to examine consumer perception and current status of water park. The Naver and Daum were used for data collection channels and the keyword 'water park' was used for data retrieval. The data analysis period was limited to the study period from January 1, 2015 to December 31, 2016 for a total of two years. First, as a result of the frequency analysis, hidden cameras, Lotte water park, arrests, suspects, gimhae were in top 5 in 2015, Lotte water park, swimming, summer, opening, admission ticket were in top 5 in 2016. Second, as a result of the connection degree central analysis, hidden camera, arrest, suspect, female, shower room were in top 5 in 2015, swimming, Lotte water park, summer and One Mount, admission ticket were in top 5 in 2016. Third, as a result of the N-GRAM network graph, the water park/hidden camera, the hidden camera/hidden camera, the suspect/arrest, the Gimhae/Lotte water park, water park/suspect were in top 5 in 2015, and One Mount/water park, Gimhae/Lotte water park, water park/admission ticket, water park/water park, water park/opening were in top 5 in 2016. Fourth, as a result of the CONCOR analysis, three groups in 2015 and two groups in 2016 were formed.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

An Analysis for Deriving New Convergent Service of Mobile Learning: The Case of Social Network Analysis and Association Rule (모바일 러닝에서의 신규 융합서비스 도출을 위한 분석: 사회연결망 분석과 연관성 분석 사례)

  • Baek, Heon;Kim, Jin Hwa;Kim, Yong Jin
    • Information Systems Review
    • /
    • v.15 no.3
    • /
    • pp.1-37
    • /
    • 2013
  • This study is conducted to explore the possibility of service convergence to promote mobile learning. This study has attempted to identify how mobile learning service is provided, which services among them are considered most popular, and which services are highly demanded by users. This study has also investigated the potential opportunities for service convergence of mobile service and e-learning. This research is then extended to examine the possibility of active convergence of common services in mobile services and e-learning. Important variables have been identified from related web pages of portal sites using social network analysis (SNA) and association rules. Due to the differences in number and type of variables on different web pages, SNA was used to deal with the difficulties of identifying the degree of complex connection. Association analysis has been used to identify association rules among variables. The study has revealed that most frequent services among common services of mobile services and e-learning were Games and SNS followed by Payment, Advertising, Mail, Event, Animation, Cloud, e-Book, Augmented Reality and Jobs. This study has also found that Search, News, GPS in mobile services were turned out to be very highly demanded while Simulation, Culture, Public Education were highly demanded in e-learning. In addition, It has been found that variables involving with high service convergence based on common variables of mobile and e-learning services were Games and SNS, Games and Sports, SNS and Advertising, Games and Event, SNS and e-Book, Games and Community in mobile services while Games, Animation, Counseling, e-Book, being preceding services Simulation, Speaking, Public Education, Attendance Management were turned out be highly convergent in e-learning services. Finally, this study has attempted to predict possibility of active service convergence focusing on Games, SNS, e-Book which were highly demanded common services in mobile and e-learning services. It is expected that this study can be used to suggest a strategic direction to promote mobile learning by converging mobile services and e-learning.

  • PDF

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.