• Title/Summary/Keyword: Sport club

Search Result 92, Processing Time 0.023 seconds

The Effects of Exercise Commitment of University Water Sport Participants on Re-participation Intentions

  • HUR, Seung Eun;OH, Chae Yun;JIN, Su Yeon;MOON, Hwang Woon
    • Journal of Sport and Applied Science
    • /
    • v.4 no.4
    • /
    • pp.19-25
    • /
    • 2020
  • Purpose: Today, participation rate of water sport has been dramatically increased due to expansion of leisure time and concerns. The purpose of this study is to identify the effect of the exercise commitment of university water sport participants on re-participation intentions and to induce insights for expanding water sport industry. Research design, data, and methodology: Subjects were collected from undergraduate students who participated water sports class in University. The sample was extracted by purposive sampling of nonprobability sampling method. To achieve the purpose of the research, survey was processed to 281 subjects. SPSS Version 21.0 was used to analyze the data. All statistical significance level was set to p<.05. In terms of measurement, items of demographic information, exercise commitment, and re-participation intentions were utilized. Results: The results are as follows. Frist, in the difference in exercise commitment and re-participation intention according to the grade, only the re-participation intention was significant. The effects of the exercise commitment of university water sport participants on re participation intentions were statistically significant. Conclusions: The findings indicate the function of sport club participants' commitment towards water sports in promoting their intentions to re-participation. The study suggested insights and future directions for expanding water sport markets and related industry.

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

A Study of Ground Reaction Forces During Professional Golfer's Swing with Different Golf Clubs (클럽별 골프 스윙 시 지면 반력 변화에 관한 연구)

  • Hur, You-Jein;Moon, Gun-Pil;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • The purpose of this study was to analysis golf swing in accordance with each club using ground reaction force data. The subject of this study was current professional golf players in Korea. Golf clubs used for this study were driver, iron4, iron7, and pitching. The ground reaction force for left and right foot was collected by one Kistler and one Bertec force platforms. Also collected visual data by NC high speed camera to check the phase which was composed of address, top of backswing, impact and finish. Sampling rate was 600Hz both ground reaction forces data and visual data. The conclusion are as follows. 1. An aspect of change for ground reaction force was that the weight between the left foot and right foot were contrary to each other in general as the phase. 2. Without regard to the type of golf club, the ratio of necessary ground reaction forces for each phase in accordance with address, top of backswing, impact, and finish was comparatively identical. 3. According to the type of golf club, the tendency of Fy was not varied. In terms of Driver, at the moment of impact, the weight of foot-both right and left-was moved to the movement direction of golf because of the rotation force from swing.

Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact (퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

Biomechanical Analysis of Soft Golf Swing (소프트 골프 스윙의 생체역학적 해석)

  • Kim Y.Y.;Kim S.H.;Kwon T.K.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.643-644
    • /
    • 2006
  • The purpose of this study is to experimentally analyze swing motion with soft golf clubs and compare with that with normal golf clubs. Soft golf is newly devised recreational sport based on golf but focus on the playability for the elderly. The subject fur the experiment performed swing motion using a normal golf club and a soft golf club in turn. The swing motion of the subjects was tracked using an opto-electric three-dimensional motion analysis system. The results were compared against those obtained with a normal golf club. The range of motion was analyzed along with top head speed for two cases. It was found that higher club head speed could be achieved with reduced range of motion at lumbar joint using soft golf club when compared against the swing using regular club. The lower range of motion fur lumbar bending means reduced risk of injury at the joint. So, it is projected that we can reduce the risk of injury with soft golf while maintaining the club head speed.

  • PDF

A Study on the Swing Path and Plane of the Club in Golf Swing (골프 클럽의 스윙궤도와 스윙면에 대한 고찰)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.99-115
    • /
    • 2004
  • In order to Know the correct swing methods in golf swing it is important to understand the whole swing path but also the concept of swing plane. But, most amateur golfers don't Know the concept of swing plane well. Therefore this study was trying to make a good material that makes the concept of swing plane easy to understand. A good swing motion data was obtained from a professional golfer using the three-dimensional DLT method. This swing motion was divided into 10 phases and evaluated using the concept of swing plane. The result of the analyze show a good matches between the path of the club and swing plane. This result was summarized as a 3 dimensional graphics to provide a good material to teach the golf swing well.

Effect of CrossFit Power Training on TPI OnBaseU Power Test and Golf Performance (크로스핏 파워 트레이닝이 TPI OnBaseU Power Test와 골프 수행력에 미치는 영향)

  • Chang Wook Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.185-195
    • /
    • 2023
  • Objective: The purpose of this study is to improve TPI OnBaseU Power Test and golf performance by conducting CrossFit power training. Method: Three male golf players from University B participated in this study. They had 3 to 4 years of golf experience and participated in 8 weeks of CrossFit power training. Results: OnBaseU Power Test: There was a lot of improvement in Sit up throw (27.9%) and Chest pass (10.58%), but there was not much improvement in Baseline Toss (R5.9, L9.8%) and Vertical Jump (4.1%). Golf shot data: There was a very statistically significant difference in Club speed, Ball speed, and Total Length, which are related to speed, and there was no difference in Club path and Smash factor, which are related to accuracy and posture. Conclusion: CrossFit power training was effective in improving TPI OnBaseU Power Test and golf performance (Club speed, Ball speed, Total Length).

Kinematical Analysis of Swing Motion with Golf Iron Clubs Used by Elite Golfers (우수 골퍼의 아이언 클럽 스윙동작에 대한 운동학적 분석)

  • Kim, Kab-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.85-94
    • /
    • 2008
  • The purpose of this study is to provide basic materials for amateur golf players or golf maniacs to learn desirable iron swing motions. This study compared and analyzed the swing motions of iron clubs(3, 6, 9) by using 3-D in three elite golf players. 1. There was no a great difference in the total of swing time by club and the time by phase was nearly similar. 2. There was no a difference in the change in a head location at address and impact by club. 3. The angle change in a right knee joint was similar by club except the difference according to the length of the club. 4. There was a subtle difference in hip rotation angle by club. 5. In each club, the same rotation angle of shoulder joint at address and impact motions contributed to accurate swing, and the maintenance of more than $90^{\circ}$ of shoulder rotation angle in top swing increased swing rotation. 6. Although subtle, the forward angle of upper body was increased with a shorter club. $30-36^{\circ}$ of forward angle of upper body was maintained at address, top swing, and impact motions.

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

Changes of Impact Variables by the Change of Golf Club Length (골프 클럽에 따른 타격자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.