• Title/Summary/Keyword: Sporadic prostate cancer

Search Result 2, Processing Time 0.015 seconds

Association between Mismatch Repair Gene MSH3 codons 1036 and 222 Polymorphisms and Sporadic Prostate Cancer in the Iranian Population

  • Jafary, Fariba;Salehi, Mansoor;Sedghi, Maryam;Nouri, Nayereh;Jafary, Farzaneh;Sadeghi, Farzaneh;Motamedi, Shima;Talebi, Maede
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6055-6057
    • /
    • 2012
  • The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.

A2 Allele Polymorphism of the CYP17 Gene and Prostate Cancer Risk in an Iranian Population

  • Karimpur-Zahmatkesh, Arezu;Farzaneh, Farah;Pouresmaeili, Farkhondeh;Hosseini, Jalil;Azarghashb, Eznollah;Yaghoobi, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1049-1052
    • /
    • 2013
  • Background: Studies have shown that alterations of steroid hormone metabolism, particularly involving testosterone, affect the risk of prostate cancer. Therefore, genetic variation in genes of enzymes which are involved could be of importance. The gene most interest is CYP17, whose enzyme product has an essential role in testosterone hormone synthesis. Some studies have indicated that the A2 allele polymorphism of CYP17 associated with increased risk of prostate cancer that could be affected by ethnicity. Therefore, the aim of this study was determination of presence or absence of the A2 allele in patients with prostate cancer. Materials and Methods: We studied the association of A2 allele and prostate cancer among 74 patients with prostate cancer and 128 healthy men which were referred to hospitals of SBMU. Results: This study revealed a significant association between prostate cancer risk and the A2 allele in an Iranian population so that A1A2 and A2A2 genotypes were more common in cases than controls with P-values of 0.029 and 0.010, respectively. Conclusions: Results of our study support a possible role of the A2 allele in sporadic prostate cancer development in Iran, in line with findings elsewhere.