• Title/Summary/Keyword: Spoofing signal

Search Result 44, Processing Time 0.02 seconds

The Anti-Spoofing Methods Using Code Antiphase of Spoofing Signal (역 위상 코드를 이용한 기만신호 대응방법)

  • Kim, Taehee;Lee, Sanguk;Kim, Jaehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1044-1050
    • /
    • 2013
  • This paper analyzes what is mitigated as spoofing attack using the U-Blox Receiver and GPS RF signal generator developed at ETRI. Generally the spoofing attack made the target receiver to be wrong navigation solution by providing false measurement of code and carrier. So we analyzed the impact of spoofing attack through the signal strength and navigation solution. In oder to test of effect of anti-spoofing signal, we consider the signal with antiphase code to spoofing signal and generated GPS normal signal and spoofing signal and anti-spoofing signal using GPS RF signal generator. This paper analyzed that the GPS receiver was responded to the spoofing attack according to code phase difference between spoofing and anti-spoofing signal. We confirmed that the spoofing signal was disappeared by anti-spoofing signal if code phase is an exact match.

Design and Performance Evaluation of GPS Spoofing Signal Detection Algorithm at RF Spoofing Simulation Environment

  • Lim, Soon;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2015
  • In this study, an algorithm that detects a spoofing signal for a GPS L1 signal was proposed, and the performance was verified through RF spoofing signal simulation. The proposed algorithm determines the reception of a spoofing signal by detecting a correlation distortion of GPS L1 C/A code caused by the spoofing signal. To detect the correlation distortion, a detection criterion of a spoofing signal was derived from the relationship among the Early, Prompt, and Late tap correlation values of a receiver correlator; and a detection threshold was calculated from the false alarm probability of spoofing signal detection. In this study, an RF spoofing environment was built using the GSS 8000 simulator (Spirent). For the RF spoofing signal generated from the simulator, the RF spoofing environment was verified using the commercial receiver DL-V3 (Novatel Inc.). To verify the performance of the proposed algorithm, the RF signal was stored as IF band data using a USRP signal collector (NI) so that the data could be processed by a CNU software receiver (software defined radio). For the performance of the proposed algorithm, results were obtained using the correlation value of the software receiver, and the performance was verified through the detection of a spoofing signal and the detection time of a spoofing signal.

Region Defense Technique Using Multiple Satellite Navigation Spoofing Signals

  • Lee, Chi-Hun;Choi, Seungho;Lee, Young-Joong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2022
  • The satellite navigation deception technology disturbs the navigation solution of the receiver by generating a deceptive signal simulating the actual satellite for the satellite navigation receiver mounted on the unmanned aerial vehicle, which is the target of deception. A single spoofing technique that creates a single deceptive position and velocity can be divided into a synchronized spoofing signal that matches the code delay, Doppler frequency, and navigation message with the real satellite and an unsynchronized spoofing signal that does not match. In order to generate a signal synchronized with a satellite signal, a very sophisticated and high precision signal generation technology is required. In addition, the current position and speed of the UAV equipped with the receiver must be accurately detected in real time. Considering the detection accuracy of the current radar technology that detects small UAVs, it is difficult to detect UAVs with an accuracy of less than one chip. In this paper, we assume the asynchrony of a single spoofing signal and propose a region defense technique using multiple spoofing signals.

Performance Comparison of Anti-Spoofing Methods using Pseudorange Measurements (의사거리 측정치를 이용하는 기만신호 검출 기법의 성능 비교)

  • Cho, Sung-Lyong;Shin, Mi-Young;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.793-800
    • /
    • 2010
  • GPS spoofing is an intentional interference which uses the mimic GPS signals to fake the receivers. The generic GPS receiver is hard to recognize the spoofing signal because the spoofer generates the fake signals as close as possible to the GPS signal. So the spoofer can do critical damage to public operations. This paper introduces a basic concept of spoofing and analyzes the effect of the spoofing signal to the GPS receiver. Also for stand-alone GPS receivers, two anti-spoofing methods are implemented : RAIM based method and the SQM based method. To evaluate the performance of anti-spoofing method, the software based spoofing signal generator and GPS signal generator are implemented. The performance of the anti-spoofing methods obtained using the output of the software based GPS receiver shows that SQM based method is more effective when multiple spoofing signals exist.

An Analysis of Spoofing Effects on a GNSS Receiver Using Real-Time GNSS Spoofing Simulator (실시간 GNSS 기만 시뮬레이터를 이용한 위성항법수신기에서의 기만 영향 분석)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Jee, Gyu-In;Heo, Mun-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • In this paper, spoofing effects on a GNSS receiver were analyzed. The spoofer (spoofing device) was classified to two categories. One is an active spoofer and the other is a passive spoofer. The active spoofer was considered for analysis. For the analysis of spoofing effects on a GNSS receiver, a real-time GNSS spoofing simulator was developed. The simulator was consisted with two parts which are a baseband signal generation part and a RF up-conversion part. The first GNSS baseband signal was generated according to spoofing parameters such as range, range rate, GNSS navigation data, spoofing to GNSS signal ratio, and etc. The generated baseband signal was up-converted to GNSS L1 band. Then the signal transmitted to a GNSS signal. For a perfect spoofing, a spoofer knew an accurate position and velocity of a spoofing target. But, in real world, that is not nearly possible. Although uncertainty of position and velocity of the target was existed, the spoofer was operated as an efficient jammer.

Analysis of Performance of Spoofing Detection Algorithm in GPS L1 Signal (GPS L1 기만신호 검출 알고리즘 성능 분석)

  • Kim, Taehee;Kim, Jaehoon;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • In this paper, we investigate the type and detection methode of spoofing attack, and then analyze the performance of spoofing detection algorithm in GPS L1 signal through the simulation. Generally spoofer is different from the jammer, because the receiver can be operated and not. In case of spoofing the GPS receiver is hard to recognize the spoofing attack and can be operated normally without stopping because the spoofing signal is the mimic GPS signal. To evaluate the performance of spoofing detection algorithm, both the software based spoofing and GPS signal generator and the software based GPS receiver are implemented. In paper, we can check that spoofing signal can affect to the DLL and PLL tracking loop because code delay and doppler frequency of spoofing. The spoofing detection algorithm has been implemented using the pseudorange, signal strength and navigation solution of GPS receiver and proposed algorithm can effectively detect the spoofing signal.

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.

Design of GPS L1 C/A Spoofing Signal Detection Algorithm (GPS L1 C/A 기만 신호 검출 기법 설계)

  • Lim, Soon;Lim, Deok-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • In this paper, an effect on a GPS receiver by spoofing signal is analyzed and a GPS spoofing signal detection algorithm for GPS L1 C/A spoofing signal is proposed. A proposed detection algorithm monitors the correlation function distortion by the spoofing signal. If detected distortion is over a detection threshold, we can determine that the spoofing signal is received. The detection threshold is calculated from the statistical characteristics of a thermal noise. For verifying the suggested algorithm, a MATLAB-based simulation platform is implemented. This platform has functionalities to track GPS signal and measure the correlation values. By using this platform, the correlation function distortion by spoofing signal is observed. Also a performance of the algorithm proposed in this paper is applied and confirm the detection of a spoofing signal.

Analysis of Effect of Spoofing Signal According to Code Delay in GPS L1 Signal (GPS L1 신호에서 코드지연에 따른 기만신호 영향 분석)

  • Kim, Tae-Hee;Sin, Cheon-Sig;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.128-133
    • /
    • 2012
  • In this paper, we analysis the effect of error of code tracking and frequency tracking according to the chip delay of spoofing signal through the simulation. Firstly, we investigate the type of spoofing signal and defense technical of spoofing attack. For simulation, we generated the intermediate spoofing signal using the software GNSS signal generator simulator(SGGS), the intermediate spoofers synchronize its counterfeit GPS signals with the current broadcast GPS signals. The software GPS receiver simulator(SGRS) received the spoofing signal and normal signal from SGGS, and process the signals. In paper, we can check that the DLL and PLL tracking loop error are generated and pseudo-range is changed non-linear according to chip delay of spoofing signal when the spoofing signal is entered. As a result, we can check that navigation solution is incorrectly effected by spoofing signal.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.