• Title/Summary/Keyword: Spontaneous ocular nystagmus

Search Result 2, Processing Time 0.017 seconds

Recording and interpretation of ocular movements: spontaneous and induced nystagmus

  • Jin-Ju Kang;Seoyoung Choi;Seunghee Na;Sun-Young Oh
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.1
    • /
    • pp.10-18
    • /
    • 2023
  • The ultimate purpose of eye movement is to maintain clear vision by ensuring that images of observed objects are focused on the fovea in the retina. Accurate evaluation of ocular movements, including nystagmus and saccadic intrusions, provides very useful information for determining the overall function and abnormality of the complex oculomotor system, from the peripheral vestibular system to the cerebrum. Eye movement tests are therefore essential for the accurate diagnosis of patients who complain of dizziness and imbalance. They help to predict lesion locations from the peripheral vestibular system to the central cerebral cortex and play an important role in differentiation from other diseases. The methodology of recording and interpreting ocular movements using video-oculography are described in this review article.

Effect of Electrical Stimulation of the Vestibular System on Vestibuloocular Reflex and c-Fos Expression in the Medial Vestibular Nuclei of Unilateral Labyrinthectomized Rats (일측 전정기관 손상 흰쥐에서 전정안구반사와 내측전정신경핵의 c-Fos 단백질발현에 대한 전정기관의 전기자극 효과)

  • Park Byung-Rim;Hwang Ho-Ryong;Lee Moon-Yong;Kim Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.275-284
    • /
    • 1997
  • Unilateral labyrinthectorny (ULX) causes autonomic symptoms, ocular and postural asymmetries, which disappear over tune in the process of equilibrium recovery known as vestibular compensation. In the present study in order to elucidate mechanisms responsible for the effects of electrical stimulation on vestibular compensation and investigate the relationship between vestibular compensation and c-Fos expression in the medial vestibular nuclei following ULX, we measured spontaneous nystagmus, eye movement induced by sinusoidal rotation and c-Fos expression or to 72 hs after ULX in Sprague-Dawley rats. Experimental animals were divided into two groups: ULX group with ULX only, and electrical stimulation (ES) group with electrical stimulation of $-2{\sim}-5V$, 1.0ms, 100 Hz to the lesioned vestibular system for 4 hs/day. Spontaneous nystagmus following ULX disappeared by 72 hs in ULX group and 36 hs in ES group. In eye movement induced by sinusoidal rotation, normal pattern of eye movement by rotation toward the lesioned side was recovered 24 hs after ULX at rotation of 0.1 Hz and 6 hs after at 0.2 Hz, 0.5 Hz in ULX group. In ES group, the eye movement recovered after 12 hs at 0.1 Hz, 6 hs at 0.2 Hz, and 4 hs at 0.5 Hz. Directional Preponderance which represents the symmetry of bilateral vestibular functions showed significantly early recovery in ES group compared with that of ULX group. Expression or c-Fos immunoreactive cells in the bilateral medial vestibular nuclei was severely asymmetrical till 36 hs in ULX group, and then it became a symmetry and disappeared after 72 hs. However, ES group showed the symmetry of c-Fos expression after 6 hs, which was significantly early recovery in 25 group. All these findings suggest that electrical stimulation ameliorates recovery of vestibuloocular reflex following ULX by the restoration of the balance of the resting activity between bilateral medial vestibular nuclei. In addition, c-Fos expression in the medial vestibular nuclei could be used as a marker of vestibular compensation since c-Fos expression is closely related to the course of recovery following ULX.

  • PDF