• Title/Summary/Keyword: Spontaneous Combustion

Search Result 63, Processing Time 0.017 seconds

Thermal Stability and Critical Ignition Temperature of RPF (RPF의 열적 안정성과 한계발화온도)

  • Lim, Woo-Sub;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • It is important to understand thermal characteristic as a method to estimate the new materials, because spontaneous ignition characterized by causing combustion in the low temperature without ignition source. If can not find out the thermal characteristics of materials, it is frequent that causes of fires could not be found. The danger level of spontaneous ignition material should be estimated and by closely studying its thermal characteristic. However, RPF(Refuse Paper & Plastic Fuel) is a solid matter and getting increasesa year by year because it is an economy profit as alternative energy for limited fossil fuels. Some time RPF occur a fire in the cases of its production process and conservation. Therefore study for thermal stability and critical ignition temperature of RPF was so imperative that the experiment by means of Bombe Calorimeter, TG-DTA, MS80, SIT-II, and Wire Basket Test was implemented. As a result, RPF had a caloric value 26.4-28.3 MJ/kg, and its initial pyrolysis temperature was $192^{\circ}C$ at heating rate 2 K/min. With the result of analysis by MS 80 which is an instrument measuring microscopic calory, pure RPF not containing water has higher caloric value than RPF containing 20% water. Also, SIT-II which is an instrument of insulated auto-ignition was ignited by $118.5^{\circ}C$. This temperature is lower than that of Wire Basket Test. The critical ignition temperature was calculated by Frank-Kamenetskii equation can cause ignition at $80^{\circ}C$ when conserved in the height of 10 m by the standard of infinity slab.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.