• Title/Summary/Keyword: Splitting failure

Search Result 149, Processing Time 0.028 seconds

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

Bond-Strengthening Hooks for RC Members with High Strength Spirals

  • Kim Kil-Hee;Sato Yuichi
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.835-842
    • /
    • 2005
  • This paper presents an experimental investigation of bond-strengthening hooks as a new method to increase bond strength along flexural reinforcing bars in reinforced concrete (RC) beams and columns. The RC members, which consisted of 1,300 MPa-class spirals as shear reinforcement, often suffered from bond splitting failure. The proposed method attempts to increase confining stiffness around the flexural bars by placing U-shaped hooks and to prevent premature bond splitting failure. Twelve specimens with varied amounts and sizes of the hooks were prepared to verify the strengthening effectiveness under monotonic and cyclic loading conditions. The test result indicated that the hooks increased the bond strength along the flexural bars although the strengthening effectiveness was limited by effective reinforcement ratio $P_{be}$. This limit is determined by size of stress-transmitting zones of concrete around anchors of the hooks. Anchors of the hooks are recommended to be longer than twelve times the hook diameter and inserted deeper than a quarter of the member depth (D/4). Proposed design equations provide modest estimates of the shear strengths.

Field Application of Hydraulic Rock Splitting Technique to Biotite Granite (흑운모화강암 지역에 대한 수압암반절개기술의 현장 적용)

  • Park, Jongoh;Lee, Dal-Heui;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.263-270
    • /
    • 2017
  • Hydraulic rock splitting is a technique which leads to failure of rockmass by means of water injection with a pressure higher than the tensile strength of rockmass, using straddle packer installed in boreholes drilled from free surface. Field tests were conducted in this study for several slopes of biotite granite according to various designs for borehole layout and water injection. Test results showed that new cracks were generated to connect to adjacent holes or that pre-existed cracks were propagated by injection, finally leading to failure. In particular, this study suggests the possibility of controlling the direction of generated cracks with guide slot, since new cracks were generated parallel to the guide slots carved on a borehole wall before injection. Various types of borehole layout and injection methods should be further developed for the practical uses, considering the factors influencing on crack generation.

Analysis of Axial Splitting of Circular Metal Tubes by Using Element Deletion Method (요소 삭제 방법을 사용한 원형 금속 관의 축방향 파단 해석)

  • Lee, Sang-Hoon;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.496-503
    • /
    • 2008
  • With the improvement of computer power and technology, fracture modelling by finite element methods has become a topic of extensive studies. However, fracture simulation much limited to an academic study of crack propagation with a fine mesh. Element deletion method is a useful tool for estimating damage due to accidental or extreme loads on structures, provided that an effective and realistic criterion is established for simulating the material failure and subsequent element deletion. In this study, ABAQUS/Explicit is used to simulate the material failure on the basis of experimental results by X. Huang et al. Through numerical experiments, we suggest a formulation to determine the failure strain associated with the size and thickness of removed elements.

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF

Power Failure Sensitivity Analysis via Grouped L1/2 Sparsity Constrained Logistic Regression

  • Li, Baoshu;Zhou, Xin;Dong, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3086-3101
    • /
    • 2021
  • To supply precise marketing and differentiated service for the electric power service department, it is very important to predict the customers with high sensitivity of electric power failure. To solve this problem, we propose a novel grouped 𝑙1/2 sparsity constrained logistic regression method for sensitivity assessment of electric power failure. Different from the 𝑙1 norm and k-support norm, the proposed grouped 𝑙1/2 sparsity constrained logistic regression method simultaneously imposes the inter-class information and tighter approximation to the nonconvex 𝑙0 sparsity to exploit multiple correlated attributions for prediction. Firstly, the attributes or factors for predicting the customer sensitivity of power failure are selected from customer sheets, such as customer information, electric consuming information, electrical bill, 95598 work sheet, power failure events, etc. Secondly, all these samples with attributes are clustered into several categories, and samples in the same category are assumed to be sharing similar properties. Then, 𝑙1/2 norm constrained logistic regression model is built to predict the customer's sensitivity of power failure. Alternating direction of multipliers (ADMM) algorithm is finally employed to solve the problem by splitting it into several sub-problems effectively. Experimental results on power electrical dataset with about one million customer data from a province validate that the proposed method has a good prediction accuracy.

A Novel Optical High-Availability Seamless Redundancy (OHSR) Design Based on Beam Splitting / Combining Techniques

  • Altaha, Ibraheem Raed;Kim, Sung Chul;Rhee, Jong Myung
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.678-685
    • /
    • 2016
  • The standard high-availability seamless redundancy (HSR) protocol utilizes duplicated frame copies of each sent frame for zero fail over time. This means that even in cases of a node or link failure, the destination node will receive at least one copy of the sent frame, resulting in no network downtime. However, the standard HSR is mostly based on the electrical signal connection inside the node, which leads to the production of considerable latency at each node due to frame processing. Therefore, in a large scale HSR ring network, the accumulated latencies become significant and can often restrict the mission-critical real-time application of HSR. In this paper, we present a novel design for optical HSR (OHSR) that uses beam splitting/combining techniques. The proposed OHSR passes the frames directly to adjacent nodes without frame processing at each node, thereby theoretically generating no latency in any node. Various simulations for network samples, made to validate the OHSR design and its performance, show that the OHSR outperforms the standard HSR.

Structural behaviors of notched steel beams strengthened using CFRP strips

  • Yousefi, Omid;Narmashiri, Kambiz;Ghaemdoust, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • This paper presents the findings of experimental and numerical investigations on failure analysis and structural behavior of notched steel I-beams reinforced by bonded Carbon Fiber Reinforced Polymer (CFRP) plates under static load. To find solutions for preventing or delaying the failures, understanding the CFRP failure modes is beneficial. One non-strengthened control beam and four specimens with different deficiencies (one side and two sides) on flexural flanges in both experimental test and simulation were studied. Two additional notched beams were investigated just numerically. In the experimental test, four-point bending method with static gradual loading was employed. To simulate the specimens, ABAQUS software in full three dimensional (3D) case and non-linear analysis method was applied. The results show that the CFRP failure modes in strengthening of deficient steel I-beams include end-debonding, below point load debonding, splitting and delamination. Strengthening schedule is important to the occurrences and sequences of CFRP failure modes. Additionally, application of CFRP plates in the deficiency region prevents crack propagation and brittle failure.

Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens (보 단부 부착시험체에 의한 높은마디 철근의 부착성능)

  • Seo Dong Min;Yang Seung Youl;Hong Gi Suop;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF