• Title/Summary/Keyword: Splitting Tensile Strength

Search Result 250, Processing Time 0.025 seconds

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

Mechanical properties of natural fiber-reinforced normal strength and high-fluidity concretes

  • Kim, Joo-Seok;Lee, Hyoung-Ju;Choi, Yeol
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.531-539
    • /
    • 2013
  • An experimental investigation of mechanical properties of jute fiber-reinforced concrete (JFRC) has been reported for making a suitable construction material in terms of fiber reinforcement. Two jute fiber reinforced concretes, called jute fiber reinforced normal strength concrete (JFRNSC) and jute fiber-reinforced high-fluidity concrete (JFRHFC), were tested in compression, flexure and splitting tension. Compressive, flexural and splitting tensile strengths of specimens were investigated to four levels of jute fiber contents by volume fraction. From the test results, Jute fiber can be successfully used for normal strength concrete (NSC) and high-fluidity concrete (HFC). Particularly, HFC with jute fibers shows relatively higher improvement of strength property than that of normal strength concrete.

Effect of Curing Temperature and Aging on the mechanical Properties of Concrete (I) -Experimental Results and Analysis- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(I) -실험결과 및 분석을 중심으로-)

  • 한상훈;김진근;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.23-34
    • /
    • 2000
  • This paper reports the effects of curing temperature and aging on the strength and the modulus of elasticity. In oder to determine the strength and the modulus of elasticity with curing temperature and aging, experimental and analytical methods are adopted. The tests of 480 cylinders are carried out for type I, V and V with 15 percent replacement of fly ash cement concretes, which are cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$. and the concrete cylinders are tested at the ages of 1, 3, 7 and 28 days. According to the experimental results, the concrete subjected to high temperature at early ages attaines higher early-age compressive and splitting tensile strength but eventually attaines lower later-age compressive and splitting tensile strength. Even if modulus of elasticity has the same tendency, the variation of modulus of elasticity with curing temperature is smaller than that of compressive strength. Based on these experimental results, the relationships among compressive strength, modulus of elasticity and splitting tensile strength are proposed considering the effects of curing temperature, aging and cement type.

Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement

  • Katkhuda, Hasan N.;Shatarat, Nasim K.;Hyari, Khaled H.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.357-364
    • /
    • 2017
  • This paper presents the results of a study that investigated the improvement of the mechanical properties of coarse and fine recycled asphalt pavement (RAP) produced by adding silica fume (SF) with contents of 5%, 10%, and 15% by total weight of the cement. The coarse and fine natural aggregate (NA) were replaced by RAP with replacement ratio of 20%, 40% and 60% by the total weight of NA. In addition, SF was added to NA concrete mixes as a control for comparison. Twenty eight mixes were produced and tested for compressive, splitting tensile and flexural strength at the age of 28 days. The results show that the mechanical properties decrease with as the content of RAP increases. And the decrease in the compressive strength was more in the fine RAP mixes compared to the coarse RAP mixes, while the decrease in the splitting tensile and flexural strength was almost the same in both mixes. Furthermore, using SF enhances the mechanical properties of RAP mixes where the optimum content of SF was found to be 10%, and the mechanical properties enhancement of coarse RAP were better than fine RAP mixes. Accordingly, the RAP has the potential to be used in the concrete pavements or in other low strength construction applications in order to reduce the negative impact of RAP on the environment and human health.

Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search

  • Zhang, Zhenhao;Paul, Suvash C.;Panda, Biranchi;Huang, Yuhao;Garg, Ankit;Zhang, Yi;Garg, Akhil;Zhang, Wengang
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.81-92
    • /
    • 2020
  • Flexural and splitting strength behavior of conventional concrete can significantly be improved by incorporating the fibers in it. A significant number of research studies have been conducted on various types of fibers and their influence on the tensile capacity of concrete. However, as an important property, tensile capacity of fiber reinforced concrete (FRC) is not modelled properly. Therefore, this paper intends to formulate a model based on experiments that show the relationship between the fiber properties such as the aspect ratio (length/diameter), fiber content, compressive strength, flexural strength and splitting strength of FRC. For the purpose of modeling, various FRC mixes only with steel fiber are adopted from the existing research papers. Automated neural network search (ANS) is then developed and used to investigate the effect of input parameters such as fiber content, aspect ratio and compressive strength to the output parameters of flexural and splitting strength of FRC. It is found that the ANS model can be used to predict the flexural and splitting strength of FRC in a sensible precision.

Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume

  • Kim, Jeong-Eun;Park, Wan-Shin;Jang, Young-Il;Kim, Sun-Woo;Kim, Sun-Woong;Nam, Yi-Hyun;Kim, Do-Gyeum;Rokugo, Keitetsu
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.97-108
    • /
    • 2016
  • When the energy performance of concrete is substantially higher than that of normal type concrete, such concrete is regarded as energy efficient concrete (WBSCSD 2009). An experimental study was conducted to investigate mechanical properties of energy efficient concrete with binary, ternary and quaternary admixture at different curing ages. Slump test for workability and air content test were performed on fresh concretes. Compressive strength, splitting tensile strength were made on hardened concrete specimens. The mechanical properties of concrete were compared with predicted values by ACI 363R-84 Code, NZS 3101-95 Code, CSA A23.3-94 Code, CEB-FIP Model, EN 1991, EC 2-02, AIJ Code, JSCE Code, and KCI Code. The use of silica fume increased the compressive strengths, splitting tensile strengths, modulus of elasticities and Poisson's ratios. On the other hand, the compressive strength and splitting tensile strength decreased with increasing fly ash.

Engineering properties of steel fibre reinforced geopolymer concrete

  • Ganesan, N.;Indira, P.V.;Santhakumar, Anjana
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.305-318
    • /
    • 2013
  • Engineering properties such as compressive strength, splitting tensile strength, modulus of rupture, modulus of elasticity and Poisson's ratio of geopolymer concrete (GPC) and steel fibre reinforced geopolymer concrete (SFRGPC) have been obtained from standard tests and compared. A total of 15 specimens were tested for determining each property. The grade of concrete used was M 40. The percentages of steel fibres considered include 0.25%, 0.5%, 0.75% and 1%. In general, the addition of fibres improved the mechanical properties of both GPC and SFRGPC. However the increase was found to be nominal in the case of compressive strength (8.51%), significant in the case of splitting tensile strength (61.63%), modulus of rupture (24%), modulus of elasticity (64.92%) and Poisson's ratio (50%) at 1% volume fraction of fibres. An attempt was made to obtain the relation between the various engineering properties with the percentage of fibres added.

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.

Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design (간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Shin, Hwa-Cheol;Kim, Yong-Jic;Choi, Wook;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.