• Title/Summary/Keyword: Split-window algorithms(MCSST)

Search Result 2, Processing Time 0.016 seconds

COMPARISON OF ATMOSPHERIC CORRECTION ALGORITHMS FOR DERIVING SEA SURFACE TEMPERATURE AROUND THE KOREAN SEA AREA USING NOAA/AVHRR DATA

  • Yoon, Suk;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • To retrieve Sea Surface Temperature(SST) from NOAA-AVHRR imagery the spilt window atmospheric correction algorithm is generally used. Recently, there have been various new algorithms developed to process these data, namely the variable-coefficient split-window, the R54 transmittance-ratio method, fixed-coefficient nonlinear algorithm, dynamic water vapour (DWV) correction method, Dynamic Water Vapour and Temperature algorithm (DWVT). We used MCSST (Multi-Channel Sea surface temperature) and NLSST(Non linear sea surface temperature) algorithms in this study. The study area is around the Korea sea area (Yellow Sea). We compared and analyzed with various methods by applying each Ocean in-situ data and satellite data. The primary aim of study is to verify and optimize algorithms. Finally, this study proposes an optimized algorithm for SST retrieval.

  • PDF

A Study on Comparison of Satellite-Tracked Drifter Temperature with Satellite-Derived Sea Surface Temperature of NOAA/NESDIS

  • Park, Kyung-Ae;Chung, Joug-Yul;Kim, Kuh;Choi, Byung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.83-107
    • /
    • 1994
  • Sea surface temperatures (SSTs) estimated by using the operational SST derivation equations of NOAA/NESDIS were compared with satellite-tracked drifter temperatures. As a result of eliminating cloud-filled or contaminated pixels through several cloud tests, 69 matchup points between the drifter temperatures and the SSTs estimated with NOAA satellite 9, 10. 11 and 12 data from August, 1993 to July, 1994 were collected. Multi-channel sea surface temperature(MCSST) using a split window technique showed an approximately $1.0{\circ}C$ rms error as compared with the drifting buoy temperatures for 69 coincidences. Accuracies for satellete-derived sea surface temperatures were evaluated for only NOAA-11 AVHRR data which had relatively large matchups of 35points as compared with other satellites. For the comparison of the oberved temperatures with the calculated SSTs, linear MCSST and nonlinear cross product sea surface temperature(CPSST) algorithms by the split, the dual and the triple window technique were used respectively. As a result, the split window CPSSTs showed the smallest rms error of $0.72{\circ}C$. Defferences between the split window SSTs and the drifter temperatures appeared th have a linear tendency against the drifter temperatures and also against the differences between AVHRR channel 4 and 5 brighness temperatures. This indicates some possibilities that satelite-derived SSTs operationally calculated from the NOAA/NESDIS equation in the seas around Korea have been underestimated as compared with actural SSTs in case sea water temperature is relatively low or the atmosphere over the sea surface is very dry like in winter, while overstimated in case of high temperature or very moist atmospheric equations based on local sea measurements around Korea instead of global measurements should be derived.