• Title/Summary/Keyword: Split application of N

Search Result 98, Processing Time 0.029 seconds

Studies on the Application Rate of Cattle Slurry and Urea N on Productivity of Silage Corn and Leaching of Nitrogen in Lysimeter (액상발효우분(Cattle Slurry) 및 요소의 N 시용수준이 옥수수의 생산성과 N의 용탈에 관한 연구)

  • 육완방;최기춘
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • This study was conducted to investigate the effects of the application rate of cattle slury and urea N on productivity of corn and environmental pollution in com cultivation soil. The experiment was conformed in lysimeter which was constructed with 0.33m diameter and 1m height. This study was arranged in split plot design. Main plots were the application rate of mineral fertilizer, as urea, such as 0, 100 and 200kgN/ha and subplots were the application rate of cattle slurry, such as 0, 200 and 400kgN/ha. The results obtained were summarized as follows. 1. Dry matter yields of corn increased as the application rate of cattle slurry and urea increased. 2. Total nitrogen content of whole corn was increased as the application rate of cattle slurry and urea increased 3. The average nitrate content in leaching water by application rate of the slurry and urea N was 7.78$\mu\textrm{g}$/$m\ell$(ranged from 6.27 to 9.02$\mu\textrm{g}$/$m\ell$). Nitrate content was hardly influenced by application rates of the slurry and urea. However, nitrate content rises in proportion to a rise in precipitation.

Effects of Animal Manure Application with Additional Nitrogen Fertilizer on Improvement of Forage Productivity and Soil Fertility in Mixed Grassland

  • Wan Bang Yook;Ki Chun Choi;Jong Seung Kum
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.191-202
    • /
    • 2001
  • Experiments were conducted on established grassland sward at Gongiam, Kwangju, and Kyung-gi in Korea from 1995 to 1997. The influence of mineral-N fertilizer or animal manure(AW) on herbage dry matter(DM) yield, N yield, the recovery of AM-N, and soil N and organic matter(0M) content in the mixed sward('potomac' orchardgrass, 'fawn' tall fescue, and 'kenblue' Kentuky bluegrass) was investigated. The treatments were replicated three times in a split plot block design. AM(the main plots) was applied at 200kg N ha ' year ' on each plot. The types of AM were cattle feedlot manure(CFM), pig manure fermented with sawdust(PMFS) and Korea native cattle slurry(KNCS). Three levels of mineral-N fertilizer, as urea, ranging from 0 to 200kg N $ha^{-1}\;year^{-1}$ in 100kg increments, were superimposed on each plot. The fertilizers and AM were applied in two equal dressings(the end of March and middle of November). AM and mineral fertilizer had significant effects(p<0.05) on herbage DM and N yields. Herbage yields in KNCS were higher than those in CFM and PMFS(p

  • PDF

effect of Cattle Compost and NPK Application on Growth and Dry Matter Accumulation of Selected Forage Crops on Neqly Reclaimed Uplands (신개간지에서 구비 및 삼요소시용이 청예사료작물의 생육 및 건물축적에 미치는 영향)

  • 한민수;박종선
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.2
    • /
    • pp.108-115
    • /
    • 1991
  • A field experiment was conducted to evaluate the effects of cattle compost application on the change of soil physical properties and their relationship to yield performance of selected main forage crops. Maize(CV. Suweon 19) and sorghum hybrids(CV. Pioneer 9'31) as a summer crops and winter rye were grown on newly reclaimed red yellow soils(Fine loamy, Typic Hapludults) under different application rate of cattle compost associated with chemical NPK fertilization, from Oct. 1986 to Sept. 1989. Experimental field was laid down as a split plots design with four replications. The results obtained are summarized as follows: 1. Cattle compost application reclaimed soil physical propeties, such as formation of granular structure and water holding capacity, and it result in a great increase of plant growth and the rate of dry matter accumulation. 2. While cattle compost treatment reduced the portion of soild phase of the three phase constituents of soils, it increased the portion of air phase and liquid phase comparatively. 3. Organic matter, N, P, K, and mineral content in soil were markedly increased in the plot treated with compost. 4. Cattle compost application increased fodder production both in maize-rye and sorghum hybrids-rye cultivation. Annual dry matter yield of maize-rye cropping was 2183(NI'K only), 2425(NPK+compvst 3000 kg) and 2800kg/lOa(NPK + compost 6000kg/10a).

  • PDF

Performance of Rice Varieties at the Different Levels and Time of Nitrogen Application (질소시비량 및 분시비율이 수도품종의 생육과 수량에 미치는 영향)

  • 박종석;이석순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.222-228
    • /
    • 1988
  • This experiment was carried out to investigate the effects of N levels (0,10,20,30kg/10a) and N split rates [the rates of basal+top dressing 15 days after transplanting (DAT) : top dressing 25 days before heading (DBH) was 100 : 0, 80 : 20, 60 : 40 ] on the growth, yield, yield components, and N uptake of Seomjinbyeo (J) and Samgangbyeo (I${\times}$J). The maximum tillering stage occurred in the middle of July in both varieties, but Samgangbyeo showed the second maximum tillering stage in the middle of August probably due to the retarded early growth caused by low temperature in the tillering stage and to favoring temperature in August. Grain yield of Seomjinbyeo was similar among the N levels from 10 to 30 kg/10a without occurrence of rice blast and lodging, but that of Samgangbyeo increased as N level increased upto 30 kg/10a. Grain yield of Seomjinbyeo was higher when N was applied three times (basal and two top dressings 15 DAT and 25 DBH) compared with two times (basal and top dressing 15 DAT), but that of Samgangbyeo was not different among the N split rates. Total N uptake and the proportion of fertilizer N to the total N uptake increased as N level was higher. N uptake tended to be higher as proportion of basal+top dressing 15 DAT increased in early growth stage, but it was higher as proportion of N applied 25 DBH increased in the late growth stage. The N efficiency to produce grain per absorbed N unit decreased as N level decreased in Seomjinbyeo, but similar in Samgangbyeo.

  • PDF

Recommendation of Nitrogen Topdressing Rates at Panicle Initiation Stage of Rice Using Canopy Reflectance

  • Nguyen, Hung T.;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.141-150
    • /
    • 2008
  • The response of grain yield(GY) and milled-rice protein content(PC) to crop growth status and nitrogen(N) rates at panicle initiation stage(PIS) is critical information for prescribing topdress N rate at PIS(Npi) for target GY and PC. Three split-split-plot experiments including various N treatments and rice cultivars were conducted in Experimental Farm, Seoul National University, Korea in 2003-2005. Shoot N density(SND, g N in shoot $m^{-2}$) and canopy reflectance were measured before N application at PIS, and GY, PC, and SND were measured at harvest. Data from the first two years(2003-2004) were used for calibrating the predictive models for GY, PC, and SND accumulated from PIS to harvest using SND at PIS and Npi by multiple stepwise regression. After that the calibrated models were used for calculating N requirement at PIS for each of nine plots based on the target PC of 6.8% and the values of SND at PIS that was estimated by canopy reflectance method in the 2005 experiment. The result showed that SND at PIS in combination with Npi were successful to predict GY, PC, and SND from PIS to harvest in the calibration dataset with the coefficients of determination ($R^2$) of 0.87, 0.73, and 0.82 and the relative errors in prediction(REP, %) of 5.5, 4.3, and 21.1%, respectively. In general, the calibrated model equations showed a little lower performance in calculating GY, PC, and SND in the validation dataset(data from 2005) but REP ranging from 3.3% for PC and 13.9% for SND accumulated from PIS to harvest was acceptable. Nitrogen rate prescription treatment(PRT) for the target PC of 6.8% reduced the coefficient of variation in PC from 4.6% in the fixed rate treatment(FRT, 3.6g N $m^{-2}$) to 2.4% in PRT and the average PC of PRT was 6.78%, being very close to the target PC of 6.8%. In addition, PRT increased GY by 42.1 $gm^{-2}$ while Npi increased by 0.63 $gm^{-2}$ compared to the FRT, resulting in high agronomic N-use efficiency of 68.8 kg grain from additional kg N. The high agronomic N-use efficiency might have resulted from the higher response of grain yield to the applied N in the prescribed N rate treatment because N rate was prescribed based on the crop growth and N status of each plot.

  • PDF

Optimum Fertilization Based on Soil Testing for Chinese Cabbage Cultivation in Plastic Film Houses (시설재배지 토양 검정에 의한 배추의 적정 시비량)

  • Hong, Soon Dal;Kang, Bo Goo;Kim, Jai Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of Chinese cabbage in plastic film house, twenty soils which contain different salts contents were taken from 4 different area of plastic film house cultivation, Youngdong. Boeun county, Cheongweon county, and Cheongju city. The dry weight and the amount of N. P, and K uptakes of Chinese cabbage in the plot of no fertilization were considered as the factors representing the fertility of the soil. And a difference of dry weight and the amounts of N, P, and K uptakes of plants between the plot of fertilization and no fertilization were considered as the factors representing the total effect of fertilizer and fertilizer N, P, and K effects. respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with soil tests in order to find the critical levels and recommended method for optimum fertilization of Chinese cabbage. Chinese cabbage transplanted in two soils, having the electrical conductivity of 9.3 and 15.2 dS/m, were not able to root due to the salts toxicity. The content of inorganic N, the electrical conductivity, and CEC were founded to have significant correlation with the factors of both the soil fertility and fertilizer effects for the cultivation of Chinese cabbage. To determine the weighting degree for the productivity and the fertilizer effects, the standardized partial regression coefficient was analyzed by regression among the factors of fertility, the fertilizer effects, and the soil tests. The coefficient for inorganic N($NH_4-N$ and $NO_3-N$) was obtained as the absolute value of 756-1871 and this value was extremely higher than those of other soil tests which was 0.07-4.11. These results suggested that the content of inorganic N is the best tests for the estimation of the productivity and the fertilizer effects for the cultivation of Chinese cabbage in plastic film house. The critical level of inorganic N($NH_4-N+NO_3-N$) estimated by Cate-Nelson split method for maximum productivity and zero point of fertilizer effect was 220 mg/kg for all the factors of estimation. These results suggested that no application of fertilizer N. P, and K is required at the critical level of inorganic N of soil. Consequently the optimum application of fertilizer N, P, and K for the cultivation of Chinese cabbage in plastic film house was possible to determine by the critical level of inorganic N of soil. The critical level of electrical conductivity was estimated as 2.8 dS/m by the same method.

  • PDF

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Effects of Application of Latex Coated Urea on Yield and N-Use Efficiency of the Direct Seeding Rice on Dry Paddy Field in the Year of High Temperature (Latex 피복요소시용(被覆尿素施用)과 고온(高溫)이 건답직파(乾畓直播) 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향)

  • Yoo, Chul-Hyun;Shin, Bog-Woo;Jeong, Ji-Ho;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.324-329
    • /
    • 1998
  • To investigate the changes of $NH_4-N$ in soil, nitrogen uptake by rice plant, nitrogen use efficiency and rice yield by the application of Latex Coated Urea(LCU) on direct seeding rice, rice was planted on paddy field, Jeonbuk series at the Honam area, from 1996 to 1997. Nitrogen in LCU applied as basal dressing in whole layer was dissolved almost untill non-productive stage. Thus, nitrogen deficiency symptom appeared and N in shoot was 1.75% showing 28.1 of SPAD value at heading stage. However percentage recovery of fertilizer N was higher in LCU than with urea application. Top dressing of urea at panicle initiation stage in addition to basal dressing of LCU, increased rice yield by 9%. Conventional split application of urea on the surface decreased the percentage recovery of fertilizer N to 56.9% of whole layer application plot.

  • PDF

Effect of the Application of Cattle Slurry on Productivity and Soil Organic Matter of Rye and Rye-Red Clover Mixture (Rye 단작 및 Rye-Red Clover 혼작에서 우분슬러리 시용이 작물의 생산성 및 토양 유기물 함량에 미치는 영향)

  • Choi, Yeun-Sik;Jung, Min-Woong;Choi, Ki-Choon;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.237-244
    • /
    • 2008
  • This study was conducted to investigate the effects of the cropping system of forage crops and application of cattle slurry on productivity of forage crops and soil fertility. The field experiments were conducted on the silt clay loam at Gongiam, Kwangju, Kyung-gi province in Korea for two years. This study was arranged in split plot design with three replicates. Main plots were the cropping systems, such as single crop and mixed crops. Subplots were the application rate of cattle slurry, such as 0, 150 and 300 kg N/ha. The yields of dry matter (DM) and nitrogen (N) were hardly influenced by the cropping system, whereas DM and N yields enhanced as increasing the rates of cattle slurry application (p<0.05). The contents of crude protein (CP) and total digestible nutrients (TDN) were hardly influenced by the cropping system, whereas CP content increased as increasing the rates of cattle slurry application (p<0.05). TDN was not differentially influenced by cattle slurry application. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents were hardly influenced by the cropping system and application of cattle slurry. Organic matter (OM) content in soil samples collected at the end of the experiment were remarkably higher than those in the beginning of the experiment. The OM content of soil was significantly increased by application of cattle slurry (p<0.05).

Effects of Application of Latex Coated Urea on Yield and Nitrogen-Use Efficiency for 10-day Old Seedling Machine Transplanted (Latex 피복요소시용(被覆尿素施用)이 어린모기계이앙(機械移秧) 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향)

  • Yoo, Chul-Hyun;Kang, Seung-Weon;Shin, Bog-Woo;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.140-146
    • /
    • 1999
  • This research was conducted to investigate the changes of $NH_4-N$ in soil, nitrogen uptake by rice plant, nitrogen-use efficiency and rice yield by the application of latex coated urea(LCU) on 10-day old seedling transplanted with machine on paddy field, Jeonbuk series at the Honam area, from 1997 to 1998. Almost all nitrogen in LCU application as basal dressing in whole layer was dissolved until maximum tiller stage, the maximum dissolution time was productive tiller stage and $NH_4-N$ content of conventional plot with surface application of fertilizer were lowered at full periods. Nitrogen deficiency symptom were appeared at heading stage of 31.6% SPAD value and nitrogen concentration was 1.29% shoot. From heading stage to ripening stage, the necessity of nitrogen-fertilizer was $2.9kg\;ha^{-1}$ for the conventional split application plot and $11.9kg\;ha^{-1}$ for the whole layer application plot of LCU basal dressing. Nitrogen-use efficiency was higher at the LCU application plot than the conventional application plot and was increased for 12.7% by fertilization at panicle forming stage. The additional fertilization at panicle forming stage to basal dressing of LCU causes 13% yield increase.

  • PDF