• Title/Summary/Keyword: Splice performance

Search Result 144, Processing Time 0.027 seconds

Performance Improvement of SPLICE-based Noise Compensation for Robust Speech Recognition (강인한 음성인식을 위한 SPLICE 기반 잡음 보상의 성능향상)

  • Kim, Hyung-Soon;Kim, Doo-Hee
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.263-277
    • /
    • 2003
  • One of major problems in speech recognition is performance degradation due to the mismatch between the training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE), which is frame-based bias removal algorithm for cepstral enhancement using stereo training data and noisy speech model as a mixture of Gaussians, was proposed and showed good performance in noisy environments. In this paper, we propose several methods to improve the conventional SPLICE. First we apply Cepstral Mean Subtraction (CMS) as a preprocessor to SPLICE, instead of applying it as a postprocessor. Secondly, to compensate residual distortion after SPLICE processing, two-stage SPLICE is proposed. Thirdly we employ phonetic information for training SPLICE model. According to experiments on the Aurora 2 database, proposed method outperformed the conventional SPLICE and we achieved a 50% decrease in word error rate over the Aurora baseline system.

  • PDF

Effects of Lap Splice Details on Seismic Performance of RC Columns (RC기둥의 내진성능에 미치는 겹침 이음상세의 영향)

  • Kim, Chul-Goo;Park, Hong-Gun;Kim, Tae-Wan;Eom, Tae-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.351-360
    • /
    • 2016
  • In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length($40d_b$ and $50d_b$) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars (축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가)

  • Park, Kwang Soon;Seo, Hyeong Yeol;Kim, Tae-Hoon;Kim, Ick Hyun;Sun, Chang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

Confining Effect of Mortar-filled Steel Pipe Splice

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.27-35
    • /
    • 2008
  • Because of several advantages of mortar-filled sleeve splice in reinforced concrete buildings, this method is being applied increasingly at construction sites and various methods of the splice have been developed in Korea and other countries. In order to apply this system in the field, studies on mortar-filled sleeve splice have been mainly experimental research focused on overall structural performance. However, for understanding the structural characteristics of this splice more accurately, we need to study the confining effect of sleeve, which is known to affect bond strength between filling mortar and reinforcing bar, the most important structural elements of the bar splice. Thus, in order to examine the confinement effect of mortar-filled steel pipe sleeve splice, the present study prepared actual-size specimens of steel pipe sleeve splice, and conducted a loading. Using the test results, we analyzed how the confining effect of steel pipe sleeve affects the bond strength of this splice and obtained data for developing more reasonable methods of designing the splice of reinforcement.

Lateral confining action of mortar-filled sleeve reinforcement splice

  • Kim, Hyong-Kee;Lee, Sang-Ho
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.379-393
    • /
    • 2012
  • Of the various methods of splicing reinforcing bar in reinforced concrete structure, mortar-filled sleeve reinforcement splice offers diverse benefits, not only in terms of structural performance but also for the construction process. Consequently, after the mortar-filled sleeve splices have been developed in recent years, research and development on these splices has been actively carried out, in order to evaluate its macro structural performance, such as its strength and stiffness, with the aim of enabling this system to be applied to construction in the field as early as possible. However, to make a proper evaluation on the overall structural performance of the mortar-filled sleeve reinforcing bar splice, it is of critical importance to understand the lateral confining action of the sleeve, which is known to affect the bond strength between the embedded bar and mortar in the sleeve. Accordingly, in this study, an experiment of monotonic loading and cyclic loading was conducted with a full-sized mortar-filled sleeve splice attaching strain gauges on the sleeve surface with experimental variables such as development length of bar, etc. Based on the test results, the effect of the lateral confining action of the sleeve was analyzed and considered in terms of the bond strength between the bar and mortar in this splice.

Performance Improvement ofSpeech Recognition Based on SPLICEin Noisy Environments (SPLICE 방법에 기반한 잡음 환경에서의 음성 인식 성능 향상)

  • Kim, Jong-Hyeon;Song, Hwa-Jeon;Lee, Jong-Seok;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.53
    • /
    • pp.103-118
    • /
    • 2005
  • The performance of speech recognition system is degraded by mismatch between training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE) was introduced to overcome environmental mismatch using stereo data. In this paper, we propose several methods to improve the conventional SPLICE and evaluate them in the Aurora2 task. We generalize SPLICE to compensate for covariance matrix as well as mean vector in the feature space, and thereby yielding the error rate reduction of 48.93%. We also employ the weighted sum of correction vectors using posterior probabilities of all Gaussians, and the error rate reduction of 48.62% is achieved. With the combination of the above two methods, the error rate is reduced by 49.61% from the Aurora2 baseline system.

  • PDF

Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice (반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.