• Title/Summary/Keyword: Spiral resonator

Search Result 40, Processing Time 0.021 seconds

Low Phase Noise VCO Using the Metamaterial Broadside Coupled Spiral Resonator (메타 구조 Broadside Coupled 나선형 공진기를 이용한 저위상 잡음 전압 제어 발진기)

  • Han, Kyoung-Nam;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.961-966
    • /
    • 2009
  • In this paper, a novel voltage-controlled oscillator(VCO) using the metamaterial broadside coupled spiral resonators(BC-DSRs) is presented for reducing the phase noise. For reducing of the phase noise, the series spiral structures have been applied for the signal plane and ground plane at each in order to have the large coupling. Compared with the conventional VCO, the proposed VCO has the larger coupling coefficient constant, which makes a higher Q-factor and has reduced the phase noise of the VCO. The proposed VCO has the phase noise of $-121{\sim}-117.16\;dBc$/Hz at 100 kHz in the tuning range, $5.749{\sim}5.853\;GHz$. The figure of merit(FOM) of this VCO is $-198.45{\sim}-194.77\;dBc$/Hz at 100 Hz in the same tuning range, respectively.

A 2㎓, Low Noise, Low Power CMOS Voltage-Controlled Oscillator Using an Optimized Spiral Inductor for Wireless Communications (최적화된 나선형 인덕터를 이용한 이동 통신용 저잡음. 저전력 2㎓ CMOS VCO 설계에 관한 연구)

  • 조제광;이건상;이재신;김석기
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.283-286
    • /
    • 1999
  • A 2㎓, low noise, low power CMOS voltage-controlled oscillator (VCO) with an integrated LC resonator is presented. The design of VCO relies heavily on the on-chip spiral inductor. An optimized spiral inductor with Q-factor of nearly 8 is achieved and used for the VCO. The simulated result of phase noise is as low as -l14 ㏈c/Hz at an offset frequency of a 600KHz from a 2㎓ carrier frequency. The VCO is tuned with standard available junction capacitors, resulting in an about 400MHz tuning range (20%). Implemented in a five-metal 0.25${\mu}{\textrm}{m}$ standard CMOS process, the VCO consumes only 2㎽ from a single 2.5V supply. It occupies an active area of 620${\mu}{\textrm}{m}$$\times$720${\mu}{\textrm}{m}$.

  • PDF

An X-band Oscillator Using a New Hairpin Resonator (새로운 헤어핀 공진기를 이용한 X 밴드 발진기)

  • Seo, Sung-Won;Jeong, Jin-Ho;Park, Chan-Hyeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.250-256
    • /
    • 2008
  • In this paper, an X-band oscillator is presented using a new miniaturized microstrip hairpin resonator. The newly designed hairpin resonator on the microstrip line employs the spiral structure, which shows a higher loaded quality factor and the 50 % reduced circuit area compared to the conventional one at 9.2 GHz. The oscillator using proposed resonator shows the output power of 10.87 dBm, the second harmonic suppression of 41.99 dBc, and the phase noise performance of -101.49 dBc/Hz at 100 kHz offset, which is better than the conventional resonator oscillator by 6.17 dB.

The Design of Resonator for Miniaturization of Magnetic Resonance Wireless Power Transfer System (자기공진형 무선전력전송 시스템의 소형화를 위한 공진기 설계)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2016
  • In this paper, we miniaturized the loop and coil in magnetic resonance wireless power transfer(MR-WPT) system for application to the small mobile device. The proposed disk type double coil resonator was designed to cause resonance at 6.87 MHz. It is composed of thin copper on both-side of acrylic substrate structured 2 mm width, 1 mm pitch and 8 turns. The outer radius of spiral coil pattern is 9 cm. And the proposed loop was made of the copper wire 5 mm diameter of cross-section. The size of loop is 10 cm diameter. For resonance at 6.87 MHz, the capacitor with 3,300 pF was connected in series on the loop. We rearranged the resonators and organized several WPT systems which is rearranged by resonators. The highest transfer efficiency of miniaturized WPT system was 35.67 %. This proposed design of spiral double coil will contribute to make resonator smaller for appling small and thin mobile device.

Design and fabrication of multilayer LTCC BPF using DGS structure (DGS 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작)

  • Cho, Y.K.;Kim, H.S.;Song, H.S.;Park, K.H.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.333-337
    • /
    • 2003
  • In this paper, 5.2 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature co-firing ceramic) Multilayer technology was simulated and manufactured. A DGS(Defected Ground structure) resonator with spiral ground pattern is used to shorten resonator size and improve circuit Q factor. And the equivalent circuit of BPF was suggested. The measured result shows good agreement with simulated data. Experimental results show the center frequency of 5.25GHz, the insertion loss of 0.14dB, and the 3-dB bandwidth of 350MHz (6%). The center frequency of BPF is 5.25GHz which is available for wireless LAN.

  • PDF

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

Design of An Oscillator Using CPW Spiral Resonator (CPW Spiral 공진기를 이용한 발진기 설계)

  • Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.69-71
    • /
    • 2008
  • 본 논문은 CPW 맴돌이형 공진기를 이용하여 설계한 발진기에 대하여 기술한다. 제안된 CPW 맴돌이형 공진기는 CPW 선로 주변과 접지면 사이에 다수개의 맴돌이 구조를 포함한다. 맴돌이형 공진기는 평면형 구조에서 비교적 높은 Q 값을 가지고 있기 때문에, 발진기의 출력뿐만 아니라, 위상 잡음 개선에도 좋은 영향을 끼친다. 또한 평면형 전송선로 구조이므로 마이크로스트립은 물론 CPW 구조로도 설계가 가능하다. 설계한 발진기를 실제로 측정하여 6.54GHz에서 3.98dBm의 출력 특성과 -118.1dBc/Hz @1MHz의 위상잡음 특성을 얻었다.

  • PDF

Metamaterial Absorber Composed of Multi-layered Sub-wavelength Unit Cell (다층구조 서브파장 단위 셀로 구성된 메타물질 흡수체)

  • Kim, Hyung Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • In this paper, we propose a novel sub-wavelength unit cell metamaterial absorber using multi-layer structure. The proposed absorber consists of 4 layers, and each layer has a spiral resonator connected by a via hole. This structure increases inductance of the unit cell, and therefore the resonant frequency can shift to lower frequency. We optimized the proposed absorber, and the electrical size of the unit cell is dramatically reduced to 0.013 times of the wavelength. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. An absorption rate exceeding 97% is achieved at 1.74GHz. In addition, the proposed absorber attains a high absorption rate of 90% for different polarization and incident angles.

Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer (공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기)

  • Kim, Donggeon;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, using the globular structure designed and implemented for the transmitter and the receiver resonant wireless power transfer(WPT). The coil of the transmitter was proposed to emit a magnetic energy in three-dimensional space by winding a ball shape. Each side of the transmitter has been designed to obtain a high Q value by a spiral structure. This solves the problem that the transfer efficiency decreases rapidly depending on the location in the conventional WPT. The resonance frequency is used 6.78 MHz and the distance between the trasnitter and the receiver is 200 mm. The transfer efficiency of the proposed WPT system is higher than 40% at all direction.

A 2.4GHz Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통한 백게이트 튜닝 2.4 GHz VCO 설계)

  • Oh, Beom-Seok;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.

  • PDF