• 제목/요약/키워드: Spiral Model

검색결과 221건 처리시간 0.032초

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

Spiral Waves and Shocks in Discs around Black Holes: Low Compressibility and High Compressibility Models

  • LANZAFAME GIUSEPPE;BELVEDERE GAETANO
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.313-315
    • /
    • 2001
  • Some authors have concluded that spiral structures and shocks do not develop if an adiabatic index $\gamma$ > 1.16 is adopted in accretion disc modelling, whilst others have claimed that they obtained well defined spirals and shocks adopting a $\gamma$ = 1.2 and a $M_2/ M_1$ = 1 stellar mass ratio. In our opinion, it should be possible to develop spiral structures for low compressibility gas accretion discs if the primary component is a black hole. We considered a primary black hole of 8M0 and a small secondary component of 0.5M$\bigodot$ to favour spiral structures formations and possible spiral shocks via gas compression due to a strong gravitational attraction. We performed two 3D SPH simulations and two 2D SPH simulations and characterized a low compressibility model and a high compressibility model for each couple of simulations. 2D models reveal spiral structures existence. Moreover, spiral shocks are also evident in high compressibility 2D model at the outer disc edge. We believe that we could develop even well defined spiral shocks considering a more massive primary component.

  • PDF

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

  • GAN, WENZHEN;ZHU, PENG
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1113-1122
    • /
    • 2015
  • This paper is concerned with the pattern formation of a diffusive predator-prey model with two time delays. Based upon an analysis of Hopf bifurcation, we demonstrate that time delays can induce spatial patterns under some conditions. Moreover, by use of a series of numerical simulations, we show that the type of spatial patterns is the spiral wave. Finally, we demonstrate that the spiral wave is asymptotically stable.

Zig-Zag test에 의한 선박의 보침성능 평가에 관한 연구 (Evaluation of Course-keeping Quality of a Ship by Zig-Zag Test)

  • 이승건;이승재
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.54-60
    • /
    • 1998
  • 일반적으로 선박의 보침성능을 평가하기 위해서 spiral test가 이용되고 있다. 그러나 spiral curve를 얻기 위한 spiral시험 및 역spiral시험에 있어서 바람과 파도 등의 영향으로 많은 어려움이 따른다. 따라서 spiral 시험을 하지 않고도, zig-zag test의 overshoot angle을 이용하여 선박의 보침성능을 판정하는 방법이 시도되고 있다. 본 연구에서는 실선의 spiral 시험결과를 대상으로, K-T 조종수학모델을 적용하여 zig-zag 운동을 계산하고, overshoot angle과 보침성능과의 상관관계를 조사하였다.

  • PDF

나선근에 의한 횡보강 응력 계산을 위한 횡보강 유효 계수의 산정법 (Estimation of Confinement Effectiveness Factor for Confining Stress by Spiral)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.280-285
    • /
    • 1995
  • In order to predict the behavior of column confined with spirals, the accurate estimation of confining stress by spiral is very important, Thus a number of models have been proposed for calculating the confining stress by spiral. However, in these equations, it was not considered the effects of the difference of mechanical characteristics related to the application of high strength concrete and spiral in structures. In this study, a model equation for calculation of the confining stress by spiral was proposed based on the test results investigated here. The proposed equation included the effects of concrete strength, spacing and yield strength of spirals

  • PDF

사각 맴돌이 인덕터의 개량된 등가회로 모델 (A Modified Equivalent Element Model for Square Spiral Inductor)

  • 안동식;장동필;오승겹
    • 전자공학회논문지B
    • /
    • 제32B권10호
    • /
    • pp.1286-1293
    • /
    • 1995
  • Modified equivalent lumped element model for square spiral inductors have been derived. This model shows more accurate analysis performance than conventional models, and gives reliable design parameters. And this model is made through comparison among distributed multiple coupled line, numerical analysis and experimental data.

  • PDF

스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구 (The Effect of Annular Slit on a Compressible Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

Economic Design of Automated Spiral Parking System

  • Oh, Yonghui;Sung, Yun Chul;Hwang, Hark
    • Industrial Engineering and Management Systems
    • /
    • 제7권2호
    • /
    • pp.182-188
    • /
    • 2008
  • Automated parking systems, which automatically park and retrieve vehicles, have been steadily replacing conventional parking systems. The spiral parking system is a type of automated parking systems that has cylindrical parking tower. We develop an economic design model of spiral parking system based on a recursive optimization and simulation procedure in which the dynamic nature of the parking system can be integrated into the mathematical programming model. The optimal values of design parameters are found that gives the minimum total cost while complying with the desired performance of the system.

볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 - (Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape -)

  • 진현배;김명진;손창호;정의준
    • 한국유체기계학회 논문집
    • /
    • 제16권4호
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링 (High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement)

  • 김경민;송익환
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.10-19
    • /
    • 2018
  • 본 논문에서는 고주파 Radio-Frequency Interference (RFI) 측정용 프로브로 널리 쓰이는 Printed Spiral Coil(PSC)의 고주파 등가회로 모델이 제안되었다. 제안된 모델은 고주파 정합성을 확보하기 위하여 PSC의 설계변수에 기반한 분포 모델로 설계되었으며, 제안된 분포 등가회로 모델을 바탕으로 T-Pi 등가변환을 이용한 PSC의 고주파 해석적 모델 역시 새로이 제안되었다. 제안된 모델의 실제 고주파 RFI 측정 시 효용성을 확인하기 위하여, 임의의 RFI 노이즈 원으로 설계된 마이크로스트립 라인과 PSC 사이의 전달함수를 제안된 모델과 상호 인덕턴스를 결합하여 추출하였다. 제안된 PSC 모델의 자기 임피던스(self-impedance)와 전달함수는 3-dimensional field solver를 이용한 시뮬레이션 및 실 측정으로 검증되었으며, 6 GHz까지 높은 정합성을 보이는 것이 확인되었다. 제안된 PSC의 자기 임피던스 및 전달함수 모델은 GHz 영역의 고주파 통신대역에서의 RFI 측정용 프로브 설계 및 노이즈 간섭 예측에 활용될 수 있다.