• 제목/요약/키워드: Spiral Inductor

검색결과 145건 처리시간 0.027초

LTCC 기술을 이용한 마이크로 인덕터의 개발과 응용 (An Integrated LTCC Inductor and Its Application)

  • 김찬영;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.129-132
    • /
    • 2004
  • An integrated inductor using low temperature cofiring ceramics(LTCC) technology has been fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn $\times$ 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick, For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured value. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1W output power and 1MHz switching frequency using the inductor has been developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF

LTCC NiZnAg 이용한 DC-DC 컨버터 (A DC-DC Converter Using LTCC NiZnAg)

  • 김영진;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1435-1437
    • /
    • 2005
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) NiZnAg was fabricated. The inductor has a sandwitch structure, which consists of 18 turns-and-thin Ag rectangular spiral coils in 2-layers(10-turn & 8-turn in each layer). The two layers of Ag coils are among three thick Ni-Zn ferrite so the inductor has a dimension of 12.70mm$\times$12.70mm and 0.32mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor for low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and 500KHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 87% was obtained.

  • PDF

Experimental Analysis of the Effect of integrated MEMS inductor on the 5GHz VCO performance

  • Lee, Joon-Yeop;Kim, Ji-Hyuk;Moon, Sung-Soo;Kim, Hyeon-Chul;Chun, Kuk-Jin
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.160-164
    • /
    • 2005
  • In this paper, MEMS inductor was integrated on a 5GHz VCO using BCB as low-k dielectric layer for MEMS inductor. The VCO core circuit is realized by IBM SiGe process. We varied the spiral inductor's suspension height and posit ion on circuit, and studied their circuit interference effect on VCO performance. The VCO with inductor placed on BCB with More height and the VCO with inductor that was not positioned above active area showed better characteristics.

  • PDF

Fabrication of Planar Type Inductors Using FeTaN Magnetic Thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Journal of Magnetics
    • /
    • 제6권2호
    • /
    • pp.73-76
    • /
    • 2001
  • A double rectangular spiral type inductor has been fabricated by using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of the upper magnetic films over the coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance: inductance of 1.1 $\mu H$, Q factor of 7 (at 5 MHz), and the current capability up to 100 mA.

  • PDF

마이크로머시닝 기술을 이용한 spiral inductor의 제작 및 시뮬레이션 결과 (Fabrication and Simulation Results of Spiral Inductors using the Micromachining Technology)

  • 김현호;주병권;이전국;오명환;김수원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2245-2247
    • /
    • 2000
  • The purpose of this paper is to demonstrate for the design and the fabrication of suspended spiral inductors using the micromachining technology. Also. the characteristics of spiral inductors with substrate lossless are simulated by lumped-element model. The absence of the lossy silicon substrate after micormachining results in significantly improved quality factor characteristics of 14. Micromachined spiral inductors have the improvement of a quality factor of about 60% than spiral inductors on silicon which is not micromachined.

  • PDF

팔각 나선형 박막 인덕터의 주파수 특성 (Frequency Characteristics of Octagonal Spiral Planar Inductor)

  • 김재욱
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1284-1287
    • /
    • 2012
  • 본 논문에서 underpass와 via를 갖지 않는 팔각 나선형 박막 인덕터 구조를 제안하고 주파수 특성을 확인하였다. 인덕터의 구조는 Si를 $300{\mu}m$, $SiO_2$$7{\mu}m$으로 하였으며, Cu 코일의 폭과 선간의 간격은 각각 $20{\mu}m$으로 설정하여 3회 권선하였다. 나선형 박막 인덕터의 성능을 나타내는 인덕턴스, quality-factor, SRF에 대한 주파수 특성을 HFSS로 시뮬레이션 하였다. 팔각 나선형 박막 인덕터는 0.8~1.8GHz 범위에서 2.5nH의 인덕턴스, 5GHz에서 최대 18.9 정도의 품질계수를 가지며, SRF는 11.1GHz로 시뮬레이션 결과를 얻었다. 반면에 사각 나선형 박막 인덕터는 0.8~1.8GHz 범위에서 2.8nH의 인덕턴스, 4.9GHz에서 최대 18.9 정도의 품질계수를 가지며, SRF는 10.3GHz로 시뮬레이션 결과를 얻을 수 있었다.

A High Performance Solenoid-Type MEMS Inductor

  • Seonho Seok;Chul Nam;Park, Wonseo;Kukjin Chun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권3호
    • /
    • pp.182-188
    • /
    • 2001
  • A solenoid-type MEMS inductor with a quality factor over 10 at 2 GHz has been developed using an electroplating technique. The integrated spiral inductor has a low Q factor due to substrate loss and skin effects. It also occupies a large area compared to the solenoid-type inductor. The direction of flux of the solenoid-type inductor is parallel to the substrate, which can lower the substrate loss and other interference with integrated passive components. To estimate the characteristics of the proposed inductor over a high frequency range, the 3D FEM (Finite Element Method) simulation is used by using the HFSS at the Ansoft corporation. The electroplated solenoid-type inductor is fabricated on a glass substrate step by step by using photolithography and copper electroplating. The fabrication process to improve the quality factor of the inductor is also developed. The achieved inductance varies within a range from 0.5 nH to 2.8 nH, and the maximum Q factor is over 10.

  • PDF

새로운 트랜치 방법을 이용한 저저항 실리콘 기판에서의 High Q 인덕터의 구현 (Realization of High Q Inductor on Low Resistivity Silicon Wafer using a New and simple Trench Technique)

  • 이홍수;이진효유현규김대용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.629-632
    • /
    • 1998
  • This paper presents a new and simple technique to realize high Q inductor on low resistivity silicon wafer with 6 $\Omega$.cm. This technique is very compatible with bipolar and CMOS standard silicon process. By forming the deep and narrow trenches on the low resistivity wafer substrate under inductor pattern, oxidizing and filling with undoped polysilicon, the low resistivity silicon wafer acts as high resistivity wafer being suitable for the fabrication of high Q inductor. By using this technique the quality factor (Q) for 8-turn spiral inductor was improved up to max. 10.3 at 2 ㎓ with 3.0 $\mu\textrm{m}$ of metal thickness. The experiment results show that Q on low resistivity silicon wafer with the trench technique have been improved more than 2 times compared to the conventional low resistivity silicon wafer without trenches.

  • PDF

LTCC 기술을 이용한 DC-DC 컨버터 (A DC-DC Converter using LTCC Technology)

  • 김찬영;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.150-152
    • /
    • 2004
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) technology was fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn x 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1.32W output power and 1MHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF

실리콘 기판상에서 나선형 인덕터의 최적설계 및 제작 (OPTIMAL DESIGN AND FABRICATION OF SPIRAL INDUCTOR ON SILICON SUBSTRATE)

  • 서종삼;박종욱이성희김영석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.645-648
    • /
    • 1998
  • We used a three-dimensional inductance extraction program, Fasthenry for optimal design of the spiral inductors on silicon substrate. The inductance and quality factor of the spiral inductors with various design parameters were calculated so that the optimal parameter value was determined. The spiral inductors then were fabricated using different foundary processes and were measured using the network analyzer and microwave probes. The pad and other parasitics of measurement system were de-embedded using the y-parameter calibration technique. the inductors fabricated using the LG 0.8um process and HP 0.5um process showed the quality factor of 5.8 and 3, respectively. Finally the equivalent circuit farameters of the spiral inductors on silicon substrate were extracted from the measurement data using the matlab.

  • PDF