• Title/Summary/Keyword: Spiral Flow

Search Result 187, Processing Time 0.023 seconds

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems (태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석)

  • Nam, Jin-Hyun;Kim, Min-Cheol;Kim, Charn-Jung;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Lee, Ju-Han;Han, Gui-Young;Kang, Yong-Heack;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.22-27
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with 5k Wth Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along with this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

Investigation on the Internal Flow Characteristics of the Low Specific Speed Centrifugal Pump with Circular Casing

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.404-412
    • /
    • 2008
  • As a suitable volute configuration in the range of low specific speed, circular casing is suggested in this study. The internal flows in a centrifugal pump with the circular and spiral casings are measured by PIV and analyzed by CFD. The results show that the head and efficiency of the pump by a circular casing of very small radius are almost same as those by the spiral casing. Even at the best efficiency point, the internal flow of the pump by circular casing is asymmetric, and vortex and strong secondary flow occurs in the impeller passage. The radial velocity becomes higher remarkably only near the region of the discharge throat. The flow in the impeller outlet is strongly controlled by the circular casing because the velocity distribution almost does not affected by the position of the impeller blades.

Spiral motion of the oblate rising bubble (자유 상승하는 편구형 기포의 나선운동)

  • Lee, Jae-Young;Lee, Cheol-Ha
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3015-3020
    • /
    • 2007
  • An experimental study of the dynamic characteristics of the free rising oblate spherical bubble is investigated. As noted by Saffman, the characteristics of the spiral motion are defined with parameters of the spiral frequency, spiral radius, and rising velocity. High speed camera recorded every detail information of free rising bubble. The spiral number, the bubble rise velocity, and the angular velocities were measured for the bubble size between 1.0mm to 20.0mm in diameter. In order to make clear trajectory, we employed the Fast Fourier Transformation for the normal digital camera data to synchronize with the high speed camera data. It was found that the spiral number suggested here was monotonically decreased as the bubble size increases. The present observation, however tells us that previous Saffman's formulation shows a good agreement with the trend, but over estimated spiral number. Therefore, it is recommended that Saffman's theoretical study is needed to be improved.

  • PDF

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

Numerical Analysis on the Heat Transfer Characteristics of HDPE Pipe with the Variation of Geometries for Ground Loop Heat Exchangers (지중열교환기의 고밀도폴리에틸렌 배관 형상에 따른 열전달 성능 특성에 대한 수치해석적 연구)

  • Mensah, Kwesi;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • A ground source heat pump (GSHP) system is recommended as a heating and cooling system to solve the pending energy problem in the field of air conditioning, because it has the highest efficiency. However, higher initial construction cost works as a barrier to the promotion and dissemination of GSHP system. In this study, numerical analysis on the characteristics of high density polyethylene (HDPE) pipe with spiral inside was executed. The heat transfer and flow characteristics of it were compared with those of a conventional smooth HDPE pipe. The heat transfer coefficient and pressure drop of the spiral HDPE pipe were higher than those of the smooth HDPE pipes at the same fluid flow rate. By decreasing the flow rate, the spiral HDPE pipe represented similar values of heat transfer coefficient and pressure drop to the smooth HDPE pipe. The lower flow rate of the spiral HDPE pipe comparing with it of the smooth HDPE pipe is estimated to reduce the length of the ground loop heat exchanger.

Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type (Spiral 구조 EGR Cooler의 열유동 특성 평가)

  • 허형석;원종필;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

A Research for Reducing Methods of Sub-synchronous Vibration in Water Turbines (수차에서 발생되는 유체여기진동 저감방안 연구)

  • Park, Han-Yung;Cho, Sung-Su;Ra, Beyong-Pil;Kim, Jin-Hun;Park, Jong-Ho;Lee, Yeon-Ju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.13-18
    • /
    • 2009
  • In this paper, it is intended to figure out the features and causes of the processes of creation, growth and disappearance of spiral-vortex-flow generated in Francis turbines generally. The spiral-vortex-flow generated in draft tubes of the Francis turbines is estimated to have negative effects on power plant structure and to the people inside the building as well as to lead to a low-frequency-vibration driven by sub-synchronous whirl vibration. Therefore, we intend to investigate how much the low-frequency-vibration has an influence upon the powerhouse structure and practice analyzing the effectiveness on the previously-introduced methods to reduce side-effects of sub-synchronous whirl vibration and finally we intend to show the optimal solutions through this paper.

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets (접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.