• Title/Summary/Keyword: Spinothalamic tract

Search Result 3, Processing Time 0.019 seconds

Long-Term Potentiation of Excitatory Synaptic Strength in Spinothalamic Tract Neurons of the Rat Spinal Cord

  • Hur, Sung Won;Park, Joo Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.553-558
    • /
    • 2013
  • Spinal dorsal horn nociceptive neurons have been shown to undergo long-term synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Here, we focused on the spinothalamic tract (STT) neurons that are the main nociceptive neurons projecting from the spinal cord to the thalamus. Optical technique using fluorescent dye has made it possible to identify the STT neurons in the spinal cord. Evoked fast mono-synaptic, excitatory postsynaptic currents (eEPSCs) were measured in the STT neurons. Time-based tetanic stimulation (TBS) was employed to induce long-term potentiation (LTP) in the STT neurons. Coincident stimulation of both pre- and postsynaptic neurons using TBS showed immediate and persistent increase in AMPA receptor-mediated EPSCs. LTP can also be induced by postsynaptic spiking together with pharmacological stimulation using chemical NMDA. TBS-induced LTP observed in STT neurons was blocked by internal BAPTA, or $Ni^{2+}$, a T-type VOCC blocker. However, LTP was intact in the presence of L-type VOCC blocker. These results suggest that long-term plastic change of STT neurons requires NMDA receptor activation and postsynaptic calcium but is differentially sensitive to T-type VOCCs.

Difference in Injury of the Corticospinal Tract and Spinothalamic Tract in Patients with Putaminal Hemorrhage

  • Jang, Sung Ho;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.358-362
    • /
    • 2019
  • Purpose: We investigated the difference in injury of the corticospinal tract (CST) and the spinothalamic tract (STT) in patients with putaminal hemorrhage, using diffusion tensor tractography (DTT). Methods: Thirty one consecutive patients with PH and 34 control subjects were recruited for this study. DTT scanning was performed at early stage of PH (7-63 days), and the CST and STT were reconstructed using the Functional Magnetic Resonance Imaging of Brain (FMRIB) Software Library program. Injury of the CST and STT was defined in terms of the configuration or abnormal DTT parameters was more than 2 standard deviations lower than that of normal control subjects. Results: Among 31 patients, all 31 patients (100%) had injury of the CTS, whereas 25 patients (80.6%) had injury of the STT: the incidence of CST injury was significantly higher than that of STT (p<0.05). In detail, 20 (64.5%) of 31 patients showed a discontinuation of the CST in the affected hemisphere; in contrast, 14 patients (45.2%) of 31 patients showed a discontinuation of the STT in the affected hemisphere. Regarding the FA value, 6 (19.4%) of 31 patients and 2 (6.4%) of 31 patients were found to have injury in the CST and STT, respectively. In terms of the fiber number, the same injury incidence was observed in 11 patients (35.5%) in both the CST and STT. Conclusion: The greater vulnerability of the CST appears to be ascribed to the anatomical characteristics; the CST is located anteriorly to the center of the putamen compared with the STT.

A Neuroanatomical and Neurophsiolgical basic Study on the Mechanism of Acupuncture in central nervous system (침자기전(鍼刺機轉)의 중추신경계(中樞神經系)에서의 신경해부(神經解剖).생리학적(生理學的) 기초연구(基礎硏究))

  • Kim, Jeong-Heon
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.514-550
    • /
    • 1996
  • There are many theory in acupuncture mechanism, so we must know the detail contents. and then we can use the acupuncture as we know. the follow article will be helpful in this part. 1. Spinal cord are role in intermediate part in somatosensorypathway also in acupuncture stumulating tract 2. Acute pain pathway started in laminae I, V of gray colmn, next are the spinothalamic tract(trigeminal spinothalamic tract in above neck part) and then go to the specific thalamic nucleus. but chronic pain in laminae II, III, VI, VII, next are spinoreticular tract(trigeminal spinoreticular tract in the neck part) and finally to the nonspecific thalamic nucleus. 3. Thalamus is very important area in somatosensory stimuation including acupuncture stumulating sensory also as a pain control center. but except this, there are Hypothalamus, Limbic system Cerebral cortex and Cerebellum as intermediator. as we Know hypothalamus is related to the emotional analgesic system with a limbic system. 4. A ${\delta$ fiber has relationship in Acute, sharp and initial pain, contrary this C fiber is related with Chronic, dull and last pain. 5. In Acupuncture mechanism of pain analgesia, there are two theory, one is gate control theory as large fiber another is stimuation produced analgesia as small diameter fier. 6. In DNIC, the stimulation sources are mechanical, thermal, heating, pain and acupuncture stimulation etc. we call these as a Heterotopic Noxious Stimulation. 7. In DNIC, SRD(Subnucleus reticularis dorsalis)is core nucleus in pain imtermediated analgesic mechanism. 8. Takeshige insisted nonacupuncture point dependent analgesic mechanism and acupuncture point dependent analgesic mechanism. and protested that Stimulation acupuncture piing evoke blocking nomacupuncture point analgesic pathway.

  • PDF