• 제목/요약/키워드: Spinning Frequency

Search Result 66, Processing Time 0.023 seconds

Analysis of Effect of the Spinning Vehicle on the GPS Signal (회전체의 GPS 신호 영향 분석)

  • Cho, Jong-Chul;Kim, Jeong-Won;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.189-191
    • /
    • 2006
  • This paper analyzes effect of the spinning vehicle on the GPS signal. In rapid spinning vehicles such as missiles and space rockets, carrier phase and frequency depend on the roll rate of the vehicle. It induces phase and frequency modulation caused by the roll rate. The modulated phase and frequency increase dynamic stress error of the tracking loop. Even though higher order tracking loop can remove dynamic stress error, the dynamic stress error can not be remove in this case. In order to analyze the effect of the spinning vehicle on the GPS signal, the experiments are carried out. The experiment results show the modulation of the carrier frequency and phase caused by the roll rate of the spinning vehicle.

  • PDF

Sensitivity analysis of melt spinning process by frequency response

  • Hyun, Jae-Chun;Jung, Hyun-Wook;Lee, Joo-Sung
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • The sensitivity of the final filament to the ongoing sinusoidal disturbances has been Investigated in the viscoelastic spinning using frequency response method. Amplification ratios or gains of the spinline cross-sectional area at the take-up to any disturbances show resonant peaks along the frequency regime, where the frequencies at theme points directly correspond to the imaginary parts of the successive leading eigenvalues from the linear stability analysis. As shown in Jung et al. (1999) and Lee et al (2001), the sensitivity results on the effect of various process conditions such as spinline cooling and fluid viscoelasticity, obtained by dynamic transient simulation have been corroborated in this study. That is, increasing spinline cooling makes the system less sensitive to disturbances, thus stabilizes the spinning. Also, an increasing viscoelasticity for extension-thickening fluids decreases the sensitivity of the spinning. i.e., stabilizing the system, where, as it increases the sensitivity of the spinning of extension-thinning fluids. Furthermore, it has been found in the present study that the inertia force as one of secondary forces causes the system to be more stabile or less sensitive to process disturbances.

Experimental Verification for Transverse Vibration Behavior of a Spinning Disk with Torque Variation (구동토크의 고주파 변동 성분이 존재하는 회전원판의 횡진동 거동에 대한 실험 검증)

  • Lee Kee-Nyeong;Shin Eung-Soo;Kim Ock-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2005
  • This paper intends to identify experimentally the relationship between transverse vibration behavior of a spinning disk and high-frequency fluctuation in the driving torque. A testrig has been developed using a CD-ROM disk, a driving motor with torque-varying capability and a power transmission belt and a laser vibrometer was employed to measure the transverse vibration displacements of the disk for a certain range of the spinning speed. The results show that the spinning speed and the magnitude and frequency of the torque fluctuation affect the stability of the disk. In other word, the torque fluctuation causes the instability of the disk at several ranges of the spinning speed below the critical speed and its effects become larger as the disk spins faster or the magnitude of torque fluctuation becomes bigger. The experimental results are found to be in good agreement with analytical estimation.

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

A Roll Rate Estimation Method using GPS Signals in a Spinning Vehicle

  • Cho, Jong-Chul;Kim, Jeong-Won;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.303-306
    • /
    • 2006
  • A roll rate estimation method is proposed using the GPS measurement for spinning vehicles such as guided munitions and smart bombs. Before designing the roll rate estimator, the carrier phase and the carrier frequency deviation caused by spinning have been observed. Based on the observation, the spinning frequency is estimated using I and Q value from the correlator. The proposed method is evaluated through computer simulations using a software defined receiver and a GPS IF signal generator.

  • PDF

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

A study on the optimum operation scheme with operating reserve power (운전예비력의 최적운용방식에 관한 연구)

  • 송길영
    • 전기의세계
    • /
    • v.28 no.5
    • /
    • pp.49-55
    • /
    • 1979
  • During severe emergencies which result in insufficient generation to meet load, an automatic load shedding method considering the spinning and operating reserve can establish the optimum system operation. This paper presents methods and results of a study on the optimum operating scheme with spinning and operating reserve power in case of outage of large generator units to prevent frequency decay and continue stable operation. This study covers following three parts 1) Analysis of spinning reserve characteristics 2) Determination of operating reserve requirements 3) Development of the optimum load shedding programs By this study the optimum system operating method was recommended for reliable operation of power system.

  • PDF

Study on the optimum system operation by considering the spinning reserve power (순동예비력을 고려한 계통의 최적운용방식에 관한 연구)

  • 송길영
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.97-102
    • /
    • 1975
  • This paper describes the result of a Study for the Optimum Operating method with Spinning reserve in case of outage of large generator unit to improve the system stability and prevent the system frequency drop. This is usually done by governor free operation, so we focused our attention to the operating Char acteristics of spinning reserve. Nexy, a study was made to mesure the upper limit of Spinning reserve and when this upper limit cannot match the required power, a relationship between the amount of spinning reserve and that of the load shedding requirement was searched with regard to several system operating conditions to use it in our future system operation. By this study, the optimum system operating method was recommended for reliable operation of power system.

  • PDF