• 제목/요약/키워드: Spinning Disk

검색결과 49건 처리시간 0.025초

구동토크의 고주파 변동 성분이 존재하는 회전원판의 횡진동 거동에 대한 실험 검증 (Experimental Verification for Transverse Vibration Behavior of a Spinning Disk with Torque Variation)

  • 이기녕;신응수;김옥현
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.89-95
    • /
    • 2005
  • This paper intends to identify experimentally the relationship between transverse vibration behavior of a spinning disk and high-frequency fluctuation in the driving torque. A testrig has been developed using a CD-ROM disk, a driving motor with torque-varying capability and a power transmission belt and a laser vibrometer was employed to measure the transverse vibration displacements of the disk for a certain range of the spinning speed. The results show that the spinning speed and the magnitude and frequency of the torque fluctuation affect the stability of the disk. In other word, the torque fluctuation causes the instability of the disk at several ranges of the spinning speed below the critical speed and its effects become larger as the disk spins faster or the magnitude of torque fluctuation becomes bigger. The experimental results are found to be in good agreement with analytical estimation.

자이로스코픽 효과와 유체 동압 베어링에 의한 비대칭성을 고려한 회전 유연 디스크-스핀들 시스템의 유한요소 강제 진동 해석 (Finite Element Forced Response of a Spinning Flexible HDD Disk-spindle System Considering the Asymmetry Originating from Gyroscopic Effect and Fluid Dynamic Bearings)

  • 박기용;장건희;서찬희
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.915-922
    • /
    • 2010
  • This paper presents an efficient method for determining the forced response of a spinning flexible disk-spindle system supported by fluid dynamic bearings(FDBs) in a computer hard disk drive(HDD). The spinning flexible disk-spindle system is represented by the asymmetric finite element equations of motion originating from the asymmetric dynamic coefficients of the FDBs and the gyroscopic moment of a spinning disk-spindle system. The proposed method utilizes only the right eigenvectors of the eigenvalue problem to transform the large asymmetric finite element equations of motion into a small number of coupled equations, guaranteeing the accuracy of their numerical integration. The results are then back-substituted into the equations of motion to determine the forced response. The effectiveness of the proposed method was verified by comparing it with the responses from the classical methods of mode superposition with the general eigenvalue problems, and mode superposition with modal approximation. The proposed method was shown to be effective in determining the forced response represented by the asymmetric finite element equations of motion of a spinning flexible disk-spindle system supported by FDBs.

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석 (Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity)

  • 정진태;정두한
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

Thick Accretion Disk and Its Super Eddington Luminosity around a Spinning Black Hole

  • Jang, Uicheol;Kim, Hongsu;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.39-44
    • /
    • 2021
  • In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay's pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk "puffs up" or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.

영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향 (Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk)

  • 이기녕;신응수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

회전축 정렬불량을 가지는 유연 회전디스크의 고유치 해석 (Natural Frequencies of a Spinning Disk Misaligned with the Axis of Rotation)

  • 허진욱;정진태;김원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.817-825
    • /
    • 2001
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of rotation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in-plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained for the steady-state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out-of-plane displacement, which is discretized by the Galerkin method. Based on the discretized equations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed

  • PDF

비연성된 지배방정식을 이용한 각가속도를 갖는 회전원판의 동적 안정성 해석 (Dynamic Stability Analysis of a Spinning Disk with Angular Acceleration by Using the Uncoupled Governing Equations)

  • 최태영;정진태
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1363-1370
    • /
    • 2000
  • Dynamic stability of a flexible spinning disk with angular acceleration is considered. To avoid the coupling between the in-plane and out-of-plane displacements, the linearized strain-displacement relations are used in the Kirchhoff plate theory. The uncoupled governing equations are derived by using Hamilton's principle with considering the angular acceleration. Numerical tests show that existence of the angular acceleration makes a spinning disk dynamically unstable.

축정렬불량이 있는 회전디스크의 시간응답해석 (Time Response Analysis for a Spinning Disk with Misalignment)

  • 허진욱;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.482-487
    • /
    • 2001
  • Time responses of a flexible spinning disk of which axis of symmetry is misaligned with the axis of rotation are analyzed in a numerical manner. Equations of motions are derived by Hamilton's principle based on Kirchhoff plate theory and von-Karman strain theory, and the equations are discretized by finite element method. In obtaining the time responses, Generalized-$\alpha$ method is used to solve the equations. Based on the result, the effects of the misalignment are analyzed on the vibration characteristics of a spinning disk.

  • PDF

회전축 정렬불량을 고려한 유연회전디스크의 진동해석 (Vibration Analysis of a Flexible Spinning Disk Considering the effect of Misalignment)

  • 정진태;허진욱;최기영
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.952-959
    • /
    • 2002
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of relation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in -plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained fur the steady -state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out -of-plane displacement, which is discretized by the Galerkin method. Based on the discretized dquations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed.