• Title/Summary/Keyword: Spinnerets

Search Result 15, Processing Time 0.035 seconds

Ultrastructure of the Spinnerets and Spigots in the Funnel-web Spider, Agelena limbata (들풀거미 (Agelena limbata) 방적돌기와 토사관의 미세구조)

  • Moon, Myung-Jin;Kang, Chang-Soo
    • Applied Microscopy
    • /
    • v.33 no.4
    • /
    • pp.315-323
    • /
    • 2003
  • The fine structural characteristics of the spinnerets and spigots of the silk producing apparatus in the adult funnel-web spider, Agelena limbata, were analysed with the light and scanning electron microscopes. Silk producing apparatus of this spider was composed of three pairs of spinnerets (anterior, median, posterior) and four different types of spigots-ampullates, tubuliforms, pyriforms and aciniforms. By the examination of their ultrastructural characteristics, it has been revealed that each spigot on the spinnerets are connected through the typical silk gland within abdominal cavity. Among the three pairs of spinnerets, the posterior pairs were highly elongated and has most characteristic features. Two pairs of large ampullates were connected to anterior spinneret and another two pairs of small ampullates to median spinnerets. Spigots of the tubuliforms were observed only in female and were connected both of median and posterior spinnerets respectively. While spigots of the pyriforms were connected on the anterior spinnerets but aciniforms on both of median and posterior spinnerets respectively.

Silk Spinning Apparatuses in the Cribellate Spider Nurscia albofasciata (Araneae: Titanoecidae)

  • Park, Eun-Ah;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The fine structural characteristics of the silk spinning apparatus in the titanoecid spiders Nurscia albofasciata have been examined by the field emission scanning electron microscopy (FESEM). This titanoecid spiders have a pair of medially divided cribella just in front of the anterior spinnerets, and the surface of the cribellum is covered by hundred of tiny spigots which produce numerous cribellate silk fibrils. The cribellar silks are produced from the spigots of the sieve-like prate. and considered as a quite different sort of catching silk with dry-adhesive properties. The other types of the silk spigots were identified as follows: ampullate, pyriform and aciniform glands. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another 1-2 pairs of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets, and two kinds of the aciniform spigots feed silk into the middle (A type) and the posterior spinnerets (both of A & B types), respectively.

Microstructure of the Silk Spinning Nozzles in the Lynx Spider, Oxyopes licenti (Araneae: Oxyopidae)

  • Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • The lynx spiders are free wandering spiders with long spines on their legs. They do not build web, but hunt small insects on plants. In spite of the facts that the wandering spiders do not produce webs for prey-catching, they also have silk apparatuses even though the functions are not fully defined. This paper describes the microstructural organization of the silk-spinning nozzles and its silk glands of the lynx spider, Oxyopes licenti, revealed by the field emission scanning electron microscope (FESEM). The silkspinning nozzles of this spider were identified as three groups: ampullate, pyriform and aciniform glands. Each group of silk gland feed silk into one of the three pairs of spinnerets. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pair of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands feed silk into the anterior spinnerets (25-30 pairs in females and 24-40 pairs in males), and the aciniform glands send ductules to the middle (9-12 pairs in females and 7-11 pairs in males) and the posterior spinnerets (16-20 pairs in females and 16-17 pairs in males). Among these, the ampullate one is the most predominate gland in both sexes. However the flagelliform and the aggregate glands which had the functions of cocoon production or adhesive thread production in other webbuilding spiders were not observed at both sexes of this spider.

Fine Structure of the Silk Spinning Apparatus in the Spider Nurscia albofasciata (살깃자갈거미(Nurscia albofasciata) 방적장치의 미세구조)

  • Park, Eun-Ah;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • Here we demonstrate the fine structural characteristics of the spigots on the cribellum and its peculiar sieve-like structure at the aspects of the functional significance. The surface of the cribellum is covered by hundred of tiny spigots which producing numerous cribellate silk fibrils. It has been known that the cribellar silk is considered as a quite different sort of catching silk with dry-adhesive properties. By our fine structural observation using the field emission scanning electron microscopy (FESEM), the titanoecid spiders have a specialized sieve-like plate just in front of the anterior spinnerets. The other types of the silk spigots were identified as follows: ampullate, pyriform and aciniform glands. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another 1~2 pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets, and the aciniform glands feed silk into the median and the posterior spinnerets, respectively. Characteristically, 2 distinct types (A & B types) of the aciniform spigots were identified in this spider, and the spigots of the aciniform B type are always detected at the posterior spinneret, however sexual dimorphism for spigot is unlikely to be exhibited in this species of spider.

Fine Structure of the Silk Spigots in the Spider Dolomedes sulfureus (Araneae: Pisauridae) (닷거미과의 황닷거미(Dolomedes sulfureus)의 실크 분비장치의 미세구조)

  • Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.89-96
    • /
    • 2008
  • Dolomedes spiders of the family Pisauridae are one of free wandering spiders with semi-aquatic habitation. They do not build web for prey-hunting but build a nursery web for spiderlings. This paper describes the fine structure of the silkspinning spigots of the fishing spider Dolomedes sulfureus revealed by the field emission scanning electron microscope (FESEM). The fishing spider Dolomedes sulfureus possesses only three types of silk glands which connected through the typical spinning tubes on the spinnerets. The silk spigots of this spider were identified as three groups: ampullates, pyriforms and aciniforms. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs (or $1{\sim}2$ pairs in males) of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands feed silk into the anterior spinnerets ($62{\sim}68$ pairs in females and $45{\sim}50$ pairs in males), and the aciniforms send ductules to the middle ($33{\sim}40$ pairs in females and $18{\sim}25$ pairs in males) and the posterior spinnerets ($42{\sim}50$ pairs in females and $24{\sim}28$ pairs in males). Among these, the ampullate one is the most predominate gland in both sexes.

Ultrastructure of the Ampullate Glands in the Orb Web Spider, Nephila clav ata L. Koch III. Excretory Duct of the Small Ampullate Gland (무당거미(Nephila clavata L. Koch) 병상선(甁狀腺)의 미세구조(微細構造) III. 소병상선(小甁狀腺)의 분필관(分泌管))

  • Moon, Myung-Jin;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.19 no.1
    • /
    • pp.49-58
    • /
    • 1989
  • Ultrastructure of the excretory duct of the small ampullate gland in the orb web spider, Nephila clavata L. Koch are studied with light and electron microscopes. The small ampullate glands, located near the midline portion of the abdominal cavity, are connected with the spigots(large spinning tubes) on the middle spinnerets and composed of three parts which are the excretory duct, the storage sac and the convoluted tail. The excretory duct of this gland is enclosed by a thin layer of the outer connective tissues. By the morphology of the apical cuticles and internal textures of the epithelial cells, the duct is subdivided into two regions which are proximal duct region near the sac and distal duct region near the spinnerets. At the distal region of the ducts, the subcuticle which had the function of water removal form the progenetive silk material is well developed, whereas at the proximal region this cuticle disappeared and instead of these, endocuticle is developed. Moreover the epithelium of the distal duct region is composed of columnar epithelial cells, but at the proximal region the epithelium is changed to squamous or cuboidal forms. In the cytoplasm of the epithelial cells, rough endoplasmic reticula, Golgi comlexes and large secretory vesicles related to the production of the cuticular materials are well developed. And between the adjacent epithelial cells, specialized septate junction and desmosomes are formed along the plasma membrane.

  • PDF

Spinning Apparatus for the Dragline Silk in the Funnel-web Spider Agelena limbata(Araneae: Agelenidae)

  • Park, Jong-Gu;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2008
  • Among the four kinds of silk glands in the funnel-web spider Agelena limbata, the ampullate gland for dragline silk production is the most predominate one in both sexes, and is composed of three functional parts-excretory duct, storage ampulla and convoluted tail regions. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the middle spinnerets. There are no apparent differences between the major and minor ampullate glands not only the external spigots but also their internal silk glands. However, the microstructure is very unique in this spider, because each gland has spherical shaped storage sac with twig-like branched tails. Nevertheless, the wall of the secretory region is similarly composed of a single layer of epithelial cells. The mature secretory silks in glandular epithelium are closely packed and accumulated as electron-opaque vesicles. Most of the secretory products which originated from the rough endoplasmic reticula(rER) are grown up by fusion with the surrounding small vesicles however, the Golgi complex does not seem to play an important role in this process of secretion.

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

Spinning of Petroleum based Isotropic Pitch by Melt-blown Method

  • Kim, Chan;Lee, Su-Hyun;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to $6{\mu}m$ by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with $10{\mu}m$ diameter were produced at throughput rate of $0.17g/min{\cdot}hole$ and at die temperature of $290^{\circ}C$.

  • PDF

Study on Production of Cuticle Precursor within Silk Gland Duct of the Spider, Nephila clavata L. Koch (거미(Nephila clavata L. Koch) 견사선 분비관에서의 큐티클 전구체 생성에 관한 연구)

  • Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.20-32
    • /
    • 1995
  • Ultrastructural aspects on the production of the duct cuticle and formation of cuticular precursors within silk glands of the orb web spider, Nephila clavata L. Koch(Araneae: Araneidae), were studied using transmission electron microscope. Four kinds of silk glands(ampullate glands, tubuliform glands, flageliform glands, and aggregate glands), which connected with large spinning tubes(spigots) of the spinnerets, were examined and discussed in terms of cuticle precursor production. Inner cuticular intima which composed of three layers of cuticles-subcuticle, endocuticle and exocuticle- were commonly originated from duct epithelial cells surrounding the cuticle. The morphology and internal textures of each cuticle precursors were very diverse according to the types of silk glands. However several common features were observed. These cuticle precursors were first produced from the rough endoplasmic reticulum and next concentration was accomplished through the Golgi complex. After this step, cuticle precursors were released to the cuticle layer as a form of secretory granule by the mechanism of merocrine secretion commonly.

  • PDF