• 제목/요약/키워드: Spine Model

검색결과 197건 처리시간 0.025초

Development of spine motion analyzer (척추운동 분석기의 개발)

  • 김영은;노병현;유진환;안정호
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제14권3호
    • /
    • pp.137-146
    • /
    • 1997
  • External linkage type spine motion analysis was developed for relative trunk motion respect to the pelvis. A special programs for calculation of the relative angular motion and for graphical display were also developed. The developed device assured its accuracy and conveniency after application to 15 normal vol- unteers. Compare to the normal subjects, 18 patients treated with fixations and decompression surgery showed relatively large coupling motion. Optimal trajectory of the trunk motion derived from mathematical model in flexion and extension matched well with measurement for normal subjects.

  • PDF

Biomechanical Stability Evaluation of Anterior/posterior Spinal Fusion for Burst Fracture (척추 파열 골절 치료를 위한 전.후방 척추고정술의 생체역학적 안정성 평가)

  • Park W.M.;Kim Y.H.;Park Y.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.187-188
    • /
    • 2006
  • A 3-D finite element model of human thoracolumbar spine (T12-L2) was reconstructed from CT images. Various anterior and posterior instrumentation techniques were performed with long cage after corpectomy. Six loading cases were applied up to 10 Nm, espectively. The rotations of T12 with respect to L2 were measured and the stiffnesses were calculated as the applied forces divided by the segmental rotations. The posterior fixation technique increased the stiffness of the spine the most. The addition of anterior rod from 1 to 2 increased the stiffness significantly without posterior fixation, but no effect was found with posterior fixation. We found that different fixation techniques changed the stiffness of the spine.

  • PDF

The Effect of a Compressive Follower Pre-load on the Ligament of Lumbar Spine and the Relationship with Low Back Pain (압축 종동 예하중이 요추 인대에 미치는 영향과 요통과의 관계)

  • Moon, Chang-Hyun;Chung, Tae-Eun;Sin, Hyo-Chol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제18권6호
    • /
    • pp.63-69
    • /
    • 2010
  • A noble model of the whole lumbar spine (L1~L5) considering all the passive elements, especially the ligaments of the lumbar spine was developed. The purpose of this study was to investigate the relationship between the shear stress of the AVB and the ALL and the effect of a compressive follower pre-load on all ligaments with various motions. The result shows that the shear stress at the AVB and the ALL are positively correlated. This indicates that the shear stress of the ligament can be used an index of low back pain. Regarding the effect of a follower pre-load, contrary to our expectation, the shear stress of the ligaments was not always reduced by applying follower pre-load; flexion was decreased and axial rotation did not change, while extension and lateral bending were increased.

Analysis of Whiplash by Rear End Collisions Using a Cervical Spine Model with Preloaded Muscles (근력을 적용한 경추 모델의 후방 충돌 해석)

  • Oh, Hyun-Woo;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권2호
    • /
    • pp.139-143
    • /
    • 2010
  • Whiplash injuries often occur in motor vehicle collision accidents. This injury frequently occurs in the cervical region. However, the reason for this has not yet been clarified. In this study, a multi-body neck model with muscles was designed. Some muscles in the model were preloaded; these were previously determined using the concept of the follower load. Cervical spinal vertebrae, discs, and muscles were designed in accordance with the human cervical spine. The purpose of this study was to investigate the effect of preloads on muscles. The results imply that the whiplash model with preloaded muscles simulates practical situations more closely than models without preloads.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • 제21권3호
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF

Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite$^{(R)}$, Prodisc$^{(R)}$ and Maverick$^{(R)}$ Using Finite Element Model Study

  • Kim, Ki-Tack;Lee, Sang-Hun;Suk, Kyung-Soo;Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • 제47권6호
    • /
    • pp.446-453
    • /
    • 2010
  • Objective : The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). Methods : The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS$^{TM}$ version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Results : Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Conclusion : Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.

A Convergence Study of age-related Bone Loss and Peak BMD in Korean (한국인에서 연령에 따른 요추 및 대퇴부에서의 최대 골밀도 및 골소실률에 관한 융합 연구)

  • Kim, Young-Ran;Park, Chang-Soo
    • Journal of the Korea Convergence Society
    • /
    • 제9권5호
    • /
    • pp.77-83
    • /
    • 2018
  • We investigated the age-related BMD, accumulated bone loss rate and peak BMD at Lumbar spine, total hip in Korean using data from KNHANES (the 1st(2010), 2nd(2011) and year at the 5th survey). We found that the cubic regression model was the best for describing age-related changes in BMD. Lumbar spine, total hip in bone mineral density difference were analyzed using ANOVA. This showed that the peak BMD was at the age of 20-24 years at lumbar spine, total hip and the bone loss rate was the highest in the lumbar spine at 75-79 years and the total hip was 80 years or older in the men. This showed that the peak BMD was at the age of 40-44 years at lumbar spine, total hip and the bone loss rate was the highest in the lumbar spine at 70 years or older and the total hip was 75-79 years older, 80 years old, 55-59 years old in the women. Therefore, in men, 75 years or older to increase the rate of osteoporosis screening, and women in their 50s and older menopause related management strategies to manage osteoporosis will be needed.

A Potential New Mouse Model of Axial Spondyloarthritis Involving the Complement System

  • V. Michael Holers;Francisco G. La Rosa;Nirmal K. Banda
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.45.1-45.13
    • /
    • 2021
  • Many mouse models of rheumatoid arthritis have been identified, but only a limited number are present for axial spondyloarthritis (AxSpA). Collagen Ab-induced arthritis (CAIA) is one of the most widely used mouse models of arthritis, and it is complement-dependent. We found that mice developing CAIA also developed spinal lesions similar to those found in AxSpA. To induce CAIA, mice were injected intraperitoneally at day 0 with anti-collagen Abs, followed by LPS injection at day 3. CAIA mice demonstrated a significant kyphosis through the spine, as well as hypertrophic cartilage and osseous damage of the intravertebral joints. Immunohistochemical staining of the kyphotic area revealed increased complement C3 deposition and macrophage infiltration, with localization to the intravertebral joint margins. Near Infrared (NIR) in vivo imaging showed that anti-collagen Abs conjugated with IRDye® 800CW not only localized to cartilage surface in the joints but also to the spine in arthritic mice. We report here a novel preclinical mouse model in which, associated with the induction of CAIA, mice also exhibited salient features of AxSpA; this new experimental model of AxSpA may allow investigators to shed light on the local causal mechanisms of AxSpA bone and soft tissue changes as well as treatment.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권2호
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

Proposal of Checklists for Patient Safety in Miniscalpel Acupuncture Treatment of Cervical and Lumbar Spine: Pilot Trial (환자 안전을 위한 경추 및 요추부 도침시술 전후 체크리스트 제안: 예비연구)

  • Jo, Hee-Geun;Song, Min-Yeong;Yoon, Sang-Hoon;Jeong, Sin-Yeong;Kim, Jong-Hwan;Baek, Eun-Hye;Leem, Jungtae
    • Journal of Korean Medicine Rehabilitation
    • /
    • 제28권1호
    • /
    • pp.61-72
    • /
    • 2018
  • Objectives The authors propose a new checklist model adapted for safety miniscalpel acupuncture procedure of cervical and lumbar spine. Methods On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice. Results The checklist has three parts: 1. prevention and management of healthcare associated infections, 2. verification list before and after miniscalpel acupuncture treatment, 3. adverse event monitoring after procedure. We presented a summary checklist based on the above contents. Conclusions We propose the first patient safety checklist for minicalpel acupuncture treatment of cervical and lumbar spine. The checklist will be complemented using further research methodologies.