• Title/Summary/Keyword: Spindle design

검색결과 345건 처리시간 0.032초

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구 (A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister)

  • 김광영;김종수
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.127-139
    • /
    • 1997
  • 투포원 연사기는 스핀들 1회전에 2회의 꼬임을 부가하여 실의 신축성과 인장강도 및 내마모성을 증가시키며, 특수한 목적의 의장사를 만드는 섬유기계이다. 스핀들 유니트는 고속 회전중에 안정화된 운동이 지속되도록 구조설계가 요구되는 핵심장치로서 스핀들 유니트의 동특성 해석은 고속 스핀들 유니트설계의 최적화를 도모할 수 있을 것이다. 스핀들 유니트는 블레이드와 로타리 디스크로 구성되어 있으며, 스핀들 축에 대하여 회전체 형상을 유지 하고 있다. 동특성 해석을 수행하기 위하여 전달 매트릭스 해석법을 정의하고 해석용 프로그램인 SPINDLE을 이용하여 비틀림과 굽힘 고유진동수를 해석하였으며, 운전회전수에서 변위모우드를 분석하였다.

  • PDF

소형 태핑센터 주축의 열특성 및 주파수 분석 (Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center)

  • 최대봉;김수태;노승국;조현택
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

반응표면분석을 이용한 연삭가공용 스핀들 형상 최적화 (Shape Optimization of Grinding Spindle using Response Surface Analysis)

  • 배경태;김귀남;최부영;문홍만;노정필;허선철
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.56-61
    • /
    • 2015
  • To improve the accuracy of a machine, research needs to be conducted on the relationship between the output variables and design variables of a spindle-shaped part from the thermal and static viewpoints. Therefore, research was carried out by examining the correlation of each variable to find the optimum conditions. Moreover, DOE (design of experiments) was extensively used. The model used in this study was a grinding spindle to which a hydrostatic bearing was applied. This model was used in a preliminary analysis based on the experimental results of the previous studies. The influences of the output variables and design variables were compared through a main effect analysis. Generated response surfaces were applied to the Kriging model. To optimize the model, a screening method was selected. In comparison with the initial model, the deformation of the optimized model designed by DOE decreased by 4.1 μm, while the thermal deformation decreased by 1.2 μm. Therefore, it was efficient to design a spindle-shaped part through DOE to improve the accuracy of the machine.

플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션 (Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle)

  • 김용조
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.

주축의 열변위를 고려한 초고속 스핀들의 베어링 위치 선정 (A Study on Select Bearing Position of High Speed Spindle Considering the Thermo Behavior)

  • 박수성;정원지
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.767-772
    • /
    • 2011
  • The thermal deformation of machine tool spindle influences the performance of the manufacturing systems for precision products. According to previous studies, major factors that will affect the stiffness of the spindle include spindle diameter, elasticity of the material, bearing stiffness and bearing span. It is difficult to change spindle diameter or elasticity of the material. but change of bearing position is easy in the given range compared to other factors. In this paper, we will find a solution to minimize thermal deformation through Change the span of the bearing.

머시닝센터 주축 고장예측에 관한 연구 (A Study on Diagnosis and Prognosis for Machining Center Main Spindle Unit)

  • 이태홍
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.134-140
    • /
    • 2016
  • Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.