• 제목/요약/키워드: Spindle

검색결과 1,806건 처리시간 0.035초

NC 선반주축 의 회전성능 향상 을 위한 실험적 연구 (An Experimental Study on the Rotational Performances of NC Lathe Spindle System)

  • 이형식;이봉진;송기무
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.86-94
    • /
    • 1984
  • 본 연구에서는 최신형 슬란트베드(slant-bed)타입의 중절삭용 NC선반주축을 대상으로 하여, 구동방식의 변경-기어변속장치를 주축으로부터 완전히 분리시키고 V벨 트에 의해 구동되는 후로팅방식의 새로운 주촉구조를 설계-을 통하여 고속에서의 주축 의 회전성능 향상을 시도하였고, 실험을 통하여 그 회전성능을 전형적인 3개의 서로 다른 재래식 선반주축모델들의 값과 비교 고찰하였다.

전자기 가진기를 이용한 스핀들 불평형 진동 보상 (Vibration Compensation due to Spindle Unbalance using An Electro Magnetic Exciter)

  • 안재삼;김선민;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.505-509
    • /
    • 2001
  • When the spindle is rotated for machining the workpiece, the vibration is generated due to the spindle unbalance. This vibration affects surface finish, dimensional accuracy, tool life, and spindle bearings. To compensate this effect of the spindle unbalance, the spindle system using an EME(electro magnetic exciter)is proposed in this paper. In the proposed spindle system, the vibration due to the spindle unbalance is monitored using vibration sensors and is compensated by electromagnetic attractive forces generated in the EME which are excited by anti-direction forces corresponded with the measured unbalance. Firstly, the spindle system using an EME and control system are constructed to compensate the effect of spindle unbalance in this paper. And then the system is modeled by bond graph to analyze the system. Finally, a controller for vibration compensation due to spindle unbalance is designed and is implemented in real experimental system. As a result, experimental results show this proposed spindle system is very effective to compensate the spindle unbalance.

  • PDF

무심연삭기 주축계의 설계 및 성능평가 (Design and Performance Evaluation of a Spindle System for Centerless Grinding Machine)

  • 박천홍;황주호;조순주;조창래
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.142-150
    • /
    • 2005
  • Design and performance evaluation of a spindle system which was composed of a grinding spindle and a regulating spindle for the centerless grinding of ferrule were performed in this paper. Layout and details of spindle system were designed and hydrostatic bearings for spindles were also designed. Prototype of spindle system was developed and its availabilities to machine the ferrule were discussed using the experimental results on the spindle stiffness of each spindle, loop stiffness, rotational accuracy and thermal characteristics. Loop stiffness of the spindle system was $130\;N/{\mu}m$, which was enough to machine the ferrule. Rotational accuracies of each spindle were about $0.2{\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\~4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$ in the case of regulating spindle, which agreed well with the designed value. From these results, it was estimated that the prototype of spindle system had enough performances for the centerless grinding machine to machine the ferrule.

공구 중량조건에 의한 주축변위 특성연구 (A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition)

  • 김종관
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

소형-고속 스핀들의 반경방향 오차분석 방법 (Analysis of radial error motion in a small-sized and high-speed spindle)

  • 이응삼;이재하;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.604-608
    • /
    • 2004
  • In this paper, an efficient method is proposed to analyze the radial error of a miniaturized-high speed spindle system. Initially, a device is constructed for measuring the radial error motion using capacitance sensors. The capacitance sensors are placed perpendicular to the axis of the shaft and at 90o to each other. The spindle is rotated at high speed and the profile of the spindle is recorded. An algorithm is developed for analyzing the spindle data and determining the radial error of spindle. The present algorithm uses homogeneous transform matrix (HTM) method and iterative process for determining the radial error. The analysis procedure is performed for different speeds of the spindle. The data obtained from the present system and the results of evaluation are also presented in this paper. It is observed that this method is effective in determining and analyzing the spindle errors for high speed miniaturized spindle.

  • PDF

공작기계 주축계의 구조특성 해석시스템 SpindleX (Structural Characteristics Analysis System "SpindleX" for Machine-Tool Spindle System)

  • 김석일;조재완;이원재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2000
  • In this study, a structural characteristics analysis system for motor-integrated high-speed spindle systems, “SpindleX”, is developed based on the Timoshenko theory and the multi-layered finite element method. Since “SpindleX” has the various analysis modules related to static deflection analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically and quantitatively the design and evaluation processes of spindle system under the windows GUI environment. Also, to enhance the user-friendliness, “SpindleX” possesses the various additional functions such as the DXF file interface for auto-importing the shape and geometric data of spindle system from the DXF file, the bearing database for auto-importing the mechanical properties and geometric data of bearing by the bearing number, and the graphical visualization for certificating the imported and analysed data of spindle system.

  • PDF

고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화 (Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구 (Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling)

  • 김석관
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

무심연삭기 주축계의 설계 및 성능평가 (Design and Estimation of a Spindle System for Centerless Grinding Machine)

  • 박천홍;황주호;오윤진;조순주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2005
  • Design and estimation of a spindle system which was composed of grinding spindle and regulating spindle for the centerless grinding of ferrule was performed and prototypes of each spindle were manufactured. Loop stiffness of the spindle system was 130 N/${\mu}m$. Although the value was lower than the target value of 150 N/${\mu}m$, as there included 20% of the safety factor, it was enough to machine the ferrule. Rotational accuracies of each spindle were about 0.2${\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\;\~\;4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$in the case of regulating spindle, which were well agreed with the designed value. From these results, it was estimated that the prototype of spindle system had a enough performances for the centerless grinding machine to machine the ferrule.

  • PDF

오일-제트 윤활 방식의 모터 분리형 초고속 주축계의 열 특성 해석 (Thermal Characteristics Analysis of a High-Speed Motor-Separated Spindle System Using Oil-Jet Lubrication Method)

  • 김석일;김기태
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.69-75
    • /
    • 2004
  • This paper presents the thermal characteristics analysis of a high-speed motor-separated spindle system consisted of angular contact ball bearings and built-in motor with oil-jet lubrication. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.