• Title/Summary/Keyword: Spinal stabilization

Search Result 111, Processing Time 0.015 seconds

Studies in Biomechanical Properties on Brain-spinal Cord Response Mechanism by Human Posture Control Ability (자세조절능력에 따른 뇌-척수 신경 반응기전의 역학적 해석)

  • Yoo, Kyoung-Seok
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.6
    • /
    • pp.449-459
    • /
    • 2019
  • The purpose of this study is to identify how postural mechanics affects postural control on balance and stability by using frequency analysis technique from the kinematic data acquired during the one leg standing posture. For this purpose, the experimental group consisted of two groups, the normal group (n=6) and the national Gymnastics group (n=6). Displacement data of CoP were analyzed by frequency analysis of rambling (RM) and trembling (TR) by FFT signal processing. As a results, there was a significant difference in evaluating the stabilization index between the two groups with the eyes open and closed one leg stnading (p <.05). The cause of the difference was found to be the output of the maximum amplitude of RM (f1) and TR (f2) (p <.05). In particular, in the low frequency RM of 8-9 Hz, which is a natural frequency of signal wave involved in postural feedback feedback, the main frequency appeared to be performs the exercise mechanism of stable brain posture control. And in the high frequency TM of 120-135 Hz, it is considered that the adaptation of the reflective muscle response is minimized to minimize posture shaking. In conclusion, this study provides evidence for the intrinsic main frequencies according to the postural control ability which affects the CNS in one leg standing.