• Title/Summary/Keyword: Spinal stability

Search Result 103, Processing Time 0.029 seconds

Unilateral Biportal Endoscopic Spinal Surgery Using a 30° Arthroscope for L5-S1 Foraminal Decompression

  • Kim, Ju-Eun;Choi, Dae-Jung
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.508-512
    • /
    • 2018
  • Foraminal decompression using a minimally invasive technique to preserve facet joint stability and function without fusion reportedly improves the radicular symptoms in approximately 80% of patients and is considered one of the good surgical treatment choices for lumbar foraminal or extraforaminal stenosis. However, proper decompression was not possible because of the inability to access the foramen at the L5-S1 level due to prominence of the iliac crest. To overcome this challenge, endoscopy-based minimally invasive spine surgery has recently gained attention. Here, we report the technical skills required in unilateral extraforaminal biportal endoscopic spinal surgery using a $30^{\circ}$ arthroscope to enable foraminal decompression at the L5-S1 level. Two 0.8-cm portals were created 2 cm lateral from the lateral border of the pedicles at the L5-S1 level. After sufficient working space was made, half of the superior articular process (SAP) in the hypertrophied facet joint was removed using a high-speed burr and a 5-mm wide osteotome, whereas the remaining inside part of the SAP was removed using a Kerrison punch and pituitary punch. The foraminal ligamentum flavum should be removed to inspect the conditions of the L5 exiting root and disc. Removing of the extruded disc could decompress the L5 root. The extraforaminal approach using a $30^{\circ}$ arthroscope is considered a minimally invasive alternative technique for decompressing foraminal stenosis at the L5-S1 level that preserves facet stability and provides symptomatic relief.

The Effect of Sitting Postures on Spinal Pelvic Curvature and Trunk Muscle Activation in Low Back Pain (요통 환자에서 앉은 자세가 척추 만곡과 체간 근 활성화에 미치는 영향)

  • Choi, Moon-Seok;Chung, Yi-Jung;Jeon, Hye-Won
    • Physical Therapy Korea
    • /
    • v.16 no.2
    • /
    • pp.31-39
    • /
    • 2009
  • This study is performed to investigate the difference of the spinal stability system with and without low back pain. There were 9 participants with low back pain and 9 asymptomatic subjects to be recruited, they were measured thoracic and lumbar curvature, trunk muscle activation in upright sitting postures and slump sitting, back muscle endurance, and lumbar proprioception. Spinal curvature and surface electromyography of 4 trunk muscles were measured in an upright sitting postures and slump sitting in 18 subjects. The result of the study was that there were significant differences between the groups in spinal curvature (p<.05), significantly higher external oblique activity and less internal oblique in the low back pain group than the healthy subjects (p<.05), and significantly less proprioception in the low back pain group (p<.05). But there was not a significant difference between the trunk muscle endurance groups. According to the result, the low back pain group had greater thoracic extension and higher global muscle activity in the upright sitting posture and less proprioception. This study was useful to suggest postural training for normal muscle activation, selective muscle strengthening to prevent chronic deterioration, and helpful in making a treatment plan to indicate a synthetic care method that includes increasing proprioception.

  • PDF

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

Limited Unilateral Decompression and Pedicle Screw Fixation with Fusion for Lumbar Spinal Stenosis with Unilateral Radiculopathy : A Retrospective Analysis of 25 Cases

  • Zhang, Li;Miao, Hai-xiong;Wang, Yong;Chen, An-fu;Zhang, Tao;Liu, Xiao-guang
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Objective : Lumbar spinal stenosis is conventionally treated with surgical decompression. However, bilateral decompression and laminectomy is more invasive and may not be necessary for lumbar stenosis patients with unilateral radiculopathy. We aimed to report the outcomes of unilateral laminectomy and bilateral pedicle screw fixation with fusion for patients with lumbar spinal stenosis and unilateral radiculopathy. Methods : Patients with lumbar spinal stenosis with unilateral lower extremity radiculopathy who received limited unilateral decompression and bilateral pedicle screw fixation were included and evaluated using visual analog scale (VAS) pain and the Oswestry Disability Index (ODI) scores preoperatively and at follow-up visits. Ligamentum flavum thickness of the involved segments was measured on axial magnetic resonance images. Results : Twenty-five patients were included. The mean preoperative VAS score was $6.6{\pm}1.6$ and $4.6{\pm}3.1$ for leg and back pain, respectively. Ligamentum flavum thickness was comparable between the symptomatic and asymptomatic side (p=0.554). The mean follow-up duration was 29.2 months. The pain in the symptomatic side lower extremity (VAS score, $1.32{\pm}1.2$) and the back (VAS score, $1.75{\pm}1.73$) significantly improved (p=0.000 vs. baseline for both). The ODI improved significantly postoperatively ($6.60{\pm}6.5$; p=0.000 vs. baseline). Significant improvement in VAS pain and ODI scores were observed in patients receiving single or multi-segment decompression fusion with fixation (p<0.01). Conclusion : Limited laminectomy and unilateral spinal decompression followed by bilateral pedicle screw fixation with fusion achieves satisfactory outcomes in patients with spinal stenosis and unilateral radiculopathy. This procedure is less damaging to structures that are important for maintaining posterior stability of the spine.

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

Gender Difference in Trunk Stability and Standing Balance during Unexpected Support Surface Translation in Healthy Adults (정상 성인 남녀의 선 자세에서 비예측적 지지면 이동 시체간 안정성과 균형능력 비교)

  • Kim, Minhee;Kim, Yushin;Yoon, BumChul
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • Purpose: The aim of this study was to clarify the gender difference during standing balance in accordance with recruitment of abdominal muscles against sudden support surface translation. Methods: Twenty healthy males (n = 10, $26.50{\pm}3.54$ years, $170.60{\pm}6.30cm$, $72.80{\pm}5.69kg$) and females (n = 10, $24.40{\pm}2.63$ years, $163.00{\pm}4.97cm$, $52.10{\pm}4.41kg$) participated in the study. Each subject performed standing balance task on a platform, which moved in the anterior and posterior direction, with a total of 18 trials in three abdominal conditions (resting, hollowing, and bracing). We analyzed angular displacement of thoracic and lumbar spine and linear displacement of center of mass for evaluatione of spinal stability and standing balance, respectively. Results: Angular displacement of thoracic and lumbar spine and linear displacement of center of mass did not differ significantly between female and male in all conditions. Conclusion: Our results indicate that the ability to maintain spinal stability and standing balance were similar between male and female regardless of the abdominal contractile conditions and the direction of support surface translation.

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

Minimally Invasive Lumbar Spinal Decompression : A Comparative Study Between Bilateral Laminotomy and Unilateral Laminotomy for Bilateral Decompression

  • Kim, Seok-Won;Ju, Chang-Il;Kim, Chong-Gue;Lee, Seung-Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.195-199
    • /
    • 2007
  • Objective : Bilateral laminotomy and unilateral laminotomy for bilateral decompression are becoming the minimally invasive procedures for lumbar spinal stenosis (LSS). With the aim of less invasiveness and better preservation of spinal stability. these techniques have been developed. But there are no large randomized studies to show the surgical results between these two techniques. The objective of this study was to examine the safety and efficacy of these two minimally invasive techniques. Methods : A total of 80 patients were included in this study (Group I : bilateral laminotomy, Group II : Unilateral laminotomy for bilateral decompression). Perioperative parameters and complications were analyzed. Symptoms and scores such as visual analog scale (VAS) scores, Oswestry Disability Index (ODI) scores, and SF-36 scores of prospectively accrued patients were assessed preoperatively and at 1 month and 12 months after surgery. Paired-t test, two-sample student-t tests, and non parametric tests were used to determine cross-sectional differences between two groups. Results : No major complications such as spinal instability or deaths occurred during follow-up periods. VAS, ODI scores and SF-36 body pain and physical function scores showed statistically significant improvements in both groups (p<0.001). The significant widening of the spinal canal diameter was also noted in both groups. But, in Group II. there were minor postoperative complications such as dural tear (2 cases 5.0%), fracture of ipsilateral inferior facet (1 case 2.5%), and 5 cases of transient leg symptoms of contralateral side. Conclusion : Both bilateral laminotomy and unilateral laminotomy for bilateral decompression allow achievement of adequate and long-lasting operative results in patients with LSS. But postoperative complications are more frequent in Group II (unilateral laminotomy and bilateral decompression). These results indicate that bilateral laminotomy is the preferred minimally invasive technique to treat symptomatic LSS.

Study of a New Reciprocating Gait Orthosis for a Spinal Cord Injury Patient (척수마비환자 재활훈련용 왕복보행보조기에 관한 연구)

  • Kim, Myung-Hoe
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.81-88
    • /
    • 2002
  • This paper presents a design and a control of a New Reciprocating Gait Orthosis and dynamic walking simulation for this system. The New Reciprocating Gait Orthosis is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a New Reciprocating Gait Orthosis depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the New Reciprocating Gait Orthosis. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal card injury patients are able to train effectively with a Reciprocating Gait Orthosis. The New Reciprocating Gait Orthosis was able to keep smooth walling by the orthotic servo motors and hybrid system, make a sequence of flexion and extension of the joint during the walking. Also, the New Reciprocating Gait Orthosis turned out to be a satisfactory orthosis for walling training, for the spinal cord injury patient.

  • PDF

Surgical Experience of Neglected Lower Cervical Spine Fracture in Patient with Ankylosing Spondylitis

  • Jo, Dae-Jean;Kim, Sung-Min;Kim, Ki-Tack;Sea, Eun-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.66-69
    • /
    • 2010
  • The management of lower cervical fractures in patients with ankylosing spondylitis (AS) differs from normal cervical fractures. Patients with AS are highly susceptible to extensive neurologic injuries and spinal deformities after cervical fractures from even minor traumatic forces. These injuries are uniquely complex, require careful imaging assessment, and aggressive surgical management to optimize spinal stability and functional outcomes.