• Title/Summary/Keyword: Spinal instrumentation

Search Result 56, Processing Time 0.019 seconds

Usefulness of Simple Rod Rotation to Correct Curve of Adolescent Idiopathic Scoliosis

  • Kim, Ji Yong;Song, Kyungchul;Kim, Kyung Hyun;Rim, Dae Cheol;Yoon, Seung Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.534-538
    • /
    • 2015
  • Objective : To correct apical vertebral rotation for adolescent idiopathic scoliosis (AIS), direct vertebral derotation (DVD) or simple rod rotation (SRR) might be considered. The aim of the present study is to introduce the surgical experiences of AIS by a Korean neurosurgeon and to evaluate the effectiveness of SRR for apical vertebral rotation. Methods : A total of 9 patients (1 male and 8 females) underwent scoliosis surgery by a neurosurgeon of our hospital. The Lenke classifications of the patients were 1 of 1B, 2 of 1C, 1 of 2A, 1 of 2C, 3 of 5C and 1 of 6C. Surgery was done by manner of simple rod rotation on the concave side and in situ coronal bending. Coronal Cobb's angles, vertebral rotation angles and SRS-22 were measured on a plain standing X-ray and CT before and after surgery. Results : The mean follow up period was 25.7 months (range : 5-52). The mean number of screw positioning level was nine (6-12). The mean age was 16.4 years (range : 13-25) at surgery. The mean Risser grade was $3.7{\pm}0.9$. The apical vertebral rotation measured from the CT scans was $25.8{\pm}8.5^{\circ}$ vs. $9.3{\pm}6.7^{\circ}$ (p<0.001) and the Coronal Cobb's angle was $53.7{\pm}10.4^{\circ}$ vs. $15.4{\pm}6.5^{\circ}$ (p<0.001) preoperatively and postoperative, respectively. The SRS-22 improved from 71.9 preoperatively to 90.3 postoperatively. There were no complications related with the operations. Conclusion : SRR with pedicle screw instrumentation could be corrected successfully by axial rotation without complications. SRR might serve as a good option to correct AIS deformed curves of AIS.

Surgical Treatment of Craniovertebral Junction Instability : Clinical Outcomes and Effectiveness in Personal Experience

  • Song, Gyo-Chang;Cho, Kyoung-Suok;Yoo, Do-Sung;Huh, Pil-Woo;Lee, Sang-Bok
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Objective : Craniovertebral junction (CVJ) consists of the occipital bone that surrounds the foramen magnum, the atlas and the axis vertebrae. The mortality and morbidity is high for irreducible CVJ lesion with cervico-medullary compression. In a clinical retrospective study, the authors reviewed clinical and radiographic results of occipitocervical fusion using a various methods in 32 patients with CVJ instability. Methods : Thirty-two CVJ lesions (18 male and 14 female) were treated in our department for 12 years. Instability resulted from trauma (14 cases), rheumatoid arthritis (8 cases), assimilation of atlas (4 cases), tumor (2 cases), basilar invagination (2 cases) and miscellaneous (2 cases). Thirty-two patients were internally fixed with 7 anterior and posterior decompression with occipitocervical fusion, 15 posterior decompression and occipitocervical fusion with wire-rod, 5 C1-2 transarticular screw fixation, and 5 C1 lateral mass-C2 transpedicular screw. Outcome (mean follow-up period, 38 months) was based on clinical and radiographic review. The clinical outcome was assessed by Japanese Orthopedic Association (JOA) score. Results : Nine neurologically intact patients remained same after surgery. Among 23 patients with cervical myelopathy, clinical improvement was noted in 18 cases (78.3%). One patient died 2 months after the surgery because of pneumonia and sepsis. Fusion was achieved in 27 patients (93%) at last follow-up. No patient developed evidence of new, recurrent, or progressive instability. Conclusion : The authors conclude that early occipitocervical fusion to be recommended in case of reducible CVJ lesion and the appropriate decompression and occipitocervical fusion are recommended in case of irreducible craniovertebral junction lesion.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Usefulness of Oblique Lateral Interbody Fusion at L5-S1 Level Compared to Transforaminal Lumbar Interbody Fusion

  • Mun, Hah Yong;Ko, Myeong Jin;Kim, Young Baeg;Park, Seung Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.723-729
    • /
    • 2020
  • Objective : The use of oblique lateral interbody fusion at the L5-S1 level (OLIF51) is increasing, but no study has directly compared OLIF51 and transforaminal lumbar interbody fusion (TLIF) at the L5-S1 level. We evaluated the usefulness of OLIF51 by comparing clinical and radiologic outcomes with those of TLIF at the same L5-S1 level. Methods : We retrospectively reviewed and compared 74 patients who underwent OLIF51 (OLIF51 group) and 74 who underwent TLIF at the L5-S1 level (TLIF51 group). Clinical outcomes were assessed with the visual analogue scale for back pain and leg pain and the Oswestry Disability Index. Mean disc height (MDH), foraminal height (FH), disc angle (DA), fusion rate, and subsidence rate were measured for radiologic outcomes. Results : The OLIF51 group used significantly higher, wider, and larger-angled cages than the TLIF51 group (p<0.001). The postoperative MDH and FH were significantly greater in the OLIF51 group than in the TLIF51 group (p<0.001). The postoperative DA was significantly larger in the OLIF51 group than in the TLIF51 group by more than 10º (p<0.001). The fusion rate was 81.1% and 87.8% at postoperative 6 months in the OLIF51 and TLIF51 groups, respectively, and the TLIF51 group showed a higher fusion rate (p<0.05). The subsidence rate was 16.2% and 25.3% in the OLIF51 and TLIF51 groups, respectively, and the OLIF51 group showed a lower subsidence rate (p<0.05). Conclusion : OLIF51 was more effective for the indirect decompression of foraminal stenosis, providing strong mechanical support with a larger cage, and making a greater lordotic angle with a high-angle cage than with TLIF.

Effect of Cage in Radiological Differences between Direct and Oblique Lateral Interbody Fusion Techniques

  • Ko, Myeong Jin;Park, Seung Won;Kim, Young Baeg
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.432-441
    • /
    • 2019
  • Objective : Few studies have reported direct comparative data of lumbar spine angles between direct lateral interbody fusion (DLIF) and oblique lateral interbody fusion (OLIF). The purpose of this study was to investigate the clinical and radiological outcomes of DLIF and OLIF, and determine influential factors. Methods : The same surgeon performed DLIF from May 2011 to August 2014 (n=201) and OLIF from September 2014 to September 2016 (n=142). Radiological parameters, cage height, cage angle (CA), cage width (CW), and cage location were assessed. We checked the cage location as the distance (mm) from the anterior margin of the disc space to the anterior metallic indicator of the cage in lateral images. Results : There were significant differences in intervertebral foramen height (FH; $22.0{\pm}2.4$ vs. $21.0{\pm}2.1mm$, p<0.001) and sagittal disc angle (SDA; $8.7{\pm}3.3$ vs. $11.3{\pm}3.2^{\circ}$, p<0.001) between the DLIF and OLIF groups at 7 days postoperatively. CA ($9.6{\pm}3.0$ vs. $8.1{\pm}2.9^{\circ}$, p<0.001) and CW ($21.2{\pm}1.6$ vs. $19.2{\pm}1.9mm$, p<0.001) were significantly larger in the OLIF group compared to the DLIF group. The cage location of the OLIF group was significantly more anterior than the DLIF group ($6.7{\pm}3.0$ vs. $9.1{\pm}3.6mm$, p<0.001). Cage subsidence at 1 year postoperatively was significantly worse in the DLIF group compared to the OLIF group ($1.0{\pm}1.5$ vs. $0.4{\pm}1.1mm$, p=0.001). Cage location was significantly correlated with postoperative FH (${\beta}=0.273$, p<0.001) and postoperative SDA (${\beta}=-0.358$, p<0.001). CA was significantly correlated with postoperative FH (${\beta}=-0.139$, p=0.044) and postoperative SDA (${\beta}=0.236$, p=0.001). Cage location (${\beta}=0.293$, p<0.001) and CW (${\beta}=-0.225$, p<0.001) were significantly correlated with cage subsidence. Conclusion : The cage location, CA, and CW seem to be important factors which result in the different-radiological outcomes between DLIF and OLIF.

A Computed Tomography-Based Anatomic Comparison of Three Different Types of C7 Posterior Fixation Techniques : Pedicle, Intralaminar, and Lateral Mass Screws

  • Jang, Woo-Young;Kim, Il-Sup;Lee, Ho-Jin;Sung, Jae-Hoon;Lee, Sang-Won;Hong, Jae-Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.166-172
    • /
    • 2011
  • Objective : The intralaminar screw (ILS) fixation technique offers an alternative to pedicle screw (PS) and lateral mass screw (LMS) fixation in the C7 spine. Although cadaveric studies have described the anatomy of the pedicles, laminae, and lateral masses at C7, 3-dimensional computed tomography (CT) imaging is the modality of choice for pre-surgical planning. In this study, the goal was to determine the anatomical parameter and optimal screw trajectory for ILS placement at C7, and to compare this information to PS and LMS placement in the C7 spine as determined by CT evaluation. Methods : A total of 120 patients (60 men and 60 women) with an average age of $51.7{\pm}13.6$ years were selected by retrospective review of a trauma registry database over a 2-year period. Patients were included in the study if they were older than 15 years of age, had standardized axial bone-window CT imaging at C7, and had no evidence of spinal trauma. For each lamina and pedicle, width (outer cortical and inner cancellous), maximal screw length, and optimal screw trajectory were measured, and the maximal screw length of the lateral mass were measured using m-view 5.4 software. Statistical analysis was performed using Student's t-test. Results : At C7, the maximal PS length was significantly greater than the ILS and LMS length (PS, $33.9{\pm}3.1$ mm; ILS, $30.8{\pm}3.1$ mm; LMS, $10.6{\pm}1.3$; p<0.01). When the outer cortical and inner cancellous width was compared between the pedicle and lamina, the mean pedicle outer cortical width at C7 was wider than the lamina by an average of 0.6 mm (pedicle, $6.8{\pm}1.2$ mm; lamina, $6.2{\pm}1.2$ mm; p<0.01). At C7, 95.8% of the laminae measured accepted a 4.0-mm screw with a 1.0 mm of clearance, compared with 99.2% of pedicle. Of the laminae measured, 99.2% accepted a 3.5-mm screw with a 1.0 mm clearance, compared with 100% of the pedicle. When the outer cortical and inner cancellous height was compared between pedicle and lamina, the mean lamina outer cortical height at C7 was wider than the pedicle by an average of 9.9 mm (lamina, $18.6{\pm}2.0$ mm; pedicle, $8.7{\pm}1.3$ mm; p<0.01). The ideal screw trajectory at C7 was also measured ($47.8{\pm}4.8^{\circ}$ for ILS and $35.1{\pm}8.1^{\circ}$ for PS). Conclusion : Although pedicle screw fixation is the most ideal instrumentation method for C7 fixation with respect to length and cortical diameter, anatomical aspect of C7 lamina is affordable to place screw. Therefore, the C7 intralaminar screw could be an alternative fixation technique with few anatomic limitations in the cases when C7 pedicle screw fixation is not favorable. However, anatomical variations in the length and width must be considered when placing an intralaminar or pedicle screw at C7.