• Title/Summary/Keyword: Spinal injuries

Search Result 171, Processing Time 0.019 seconds

Validation of guidelines for field triage of injured patients for major trauma in patients of brain and spinal injury

  • Lee, Sung Kgun;Kang, Jeong Ho;Song, Sung Wook
    • Journal of Medicine and Life Science
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • The field triage guidelines have been widely implemented in the Korean trauma system. This study aimed to evaluate and validate whether it is reliable to use the field triage guidelines for predicting severe traumatic brain injury (TBI) and traumatic spinal injury (TSI) patients. This study retrospectively analyzed in-hospital cohort registries of all TBI and TSI patients, who visited the emergency department (ED) of the Jeju National University Hospital from 1 January 2013 to 31 December 2015. The primary outcome was defined as TBI and TSI patients with an injury severity score (ISS)>15. Secondary outcomes were defined as cases in which one or more of the following conditions: in-hospital death, ISS>15, admission to the intensive care unit, emergency surgery. We enrolled 14,889 TBI and TSI patients who visited ED, of which 7,966 (53.5%) were triage positive. The overall sensitivity, specificity and area under the curve (AUC) of the full cumulative field triage guidelines step's model (Step 1+3+4 criteria) for primary outcome were 82.8%, 47.0%, and 0.646, respectively. In the results for secondary outcomes, the specificity did not show a significant difference, but the sensitivity decreased to 66.5% and AUC to 0.568. The results of this study suggest that further optimization of the field triage guidelines is needed to identify high-risk TBI and TSI patients.

Correlations between Biomechanical Characteristics, Physical Characteristics, and the Ability to Maintain Dynamic Sitting Balance on an Unstable Surface in the Disabled with Spinal Cord Injury

  • Kim, Solbi;Chang, Yoonhee;Kim, Gyoosuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • Objective: This study aims to analyze the factors that affect the ability to maintain dynamic sitting balance (DSB), biomechanical characteristics, and physical characteristics in spinal cord injuries (SCI) patients. Background: Virtual ski training systems, ski equipment, and training protocols for disabled skiers are being studied to spread awareness. However, few studies have been reported on the sitting balance ability associated with chair mono skiing. Method: A dynamic sitting balance border system was built to investigate the ability to maintain dynamic sitting balance in SCI patients. Trunk muscle activity was evaluated by electromyogram while conducting dynamic sitting balance tests. The trunk muscle strength was tested with a portable handheld dynamometer. Physical activity scores were measured with the physical activity recall assessment. Results: There were high levels of correlation between the ability to maintain DSB and trunk flexor strength, extensor strength, rotator strength, and physical activity score. However, height, weight, and injury level in SCI patients were not correlated with the ability to maintain DSB. Additionally, strong negative correlations were found between muscle activities of the external oblique and lumbar erector spinae muscles and the ability to perform the backward tilt test. Trunk extensor muscle activity during the ball lifting test was significantly higher than in other tests. Conclusion: The results indicate that improving trunk muscle strength and physical activity can increase the ability to maintain DSB. Application: The findings of a close relationship between trunk strength, physical activity, and the ability to maintain DSB need to be reflected in the chair mono ski training program.

Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: a systematic review and meta-analysis

  • Davari, Majid;Amani, Bahman;Amani, Behnam;Khanijahani, Ahmad;Akbarzadeh, Arash;Shabestan, Rouhollah
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.3-12
    • /
    • 2020
  • Neuropathic pain after spinal cord injury (SCI) has a significant negative impact on the patients' quality of life. The objective of this systematic review is to examine the safety and efficacy of pregabalin (PGB) and gabapentin (GBP) in the treatment of neuropathic pain due to SCI. PubMed, the Cochrane Library, Embase, Scopus, and the Web of Science were searched up to December 2018. The reference lists of key and review studies were reviewed for additional citations. The quality of the studies was evaluated using the Cochrane Collaboration's tools for assessing the risk of bias. A meta-analysis was performed for primary and secondary outcomes. Eight studies were eligible for inclusion. Meta-analysis of PGB vs. placebo showed that PGB was effective for neuropathic pain (standardized mean difference [SMD] = -0.40; 95% confidence interval [CI]: -0.78, -0.01), anxiety (MD = -0.68; 95% CI: -0.77, -0.59), depression (mean difference [MD] = -0.99; 95% CI: -1.08, -0.89), and sleep interference (MD = -1.08; 95% CI: -1.13, -1.02). Also, GBP was more effective than a placebo for reducing pain. No significant difference was observed between the efficacy of the two drugs (MD = -0.37; 95% CI: -1.67, 0.93). There was no significant difference between the two drugs for discontinuation due to adverse events (risk ratio = 3.00; 95% CI: 0.81, 11.15). PGB and GBP were effective vs. placebos in decreasing neuropathic pain after SCI. Also, there was no significant difference between the two drugs for decreasing pain and adverse events.

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

The Importance of Early Surgical Decompression for Acute Traumatic Spinal Cord Injury

  • Lee, Dong-Yeong;Park, Young-Jin;Song, Sang-Youn;Hwang, Sun-Chul;Kim, Kun-Tae;Kim, Dong-Hee
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.448-454
    • /
    • 2018
  • Background: Traumatic spinal cord injury (SCI) is a tragic event that has a major impact on individuals and society as well as the healthcare system. The purpose of this study was to investigate the strength of association between surgical treatment timing and neurological improvement. Methods: Fifty-six patients with neurological impairment due to traumatic SCI were included in this study. From January 2013 to June 2017, all their medical records were reviewed. Initially, to identify the factors affecting the recovery of neurological deficit after an acute SCI, we performed univariate logistic regression analyses for various variables. Then, we performed a multivariate logistic regression analysis for variables that showed a p-value of < 0.2 in the univariate analyses. The Hosmer-Lemeshow test was used to determine the goodness of fit for the multivariate logistic regression model. Results: In the univariate analysis on the strength of associations between various factors and neurological improvement, the following factors had a p-value of < 0.2: surgical timing (early, < 8 hours; late, 8-24 hours; p = 0.033), completeness of SCI (complete/incomplete; p = 0.033), and smoking (p = 0.095). In the multivariate analysis, only two variables were significant: surgical timing (odds ratio [OR], 0.128; p = 0.004) and completeness of SCI (OR, 9.611; p = 0.009). Conclusions: Early surgical decompression within 8 hours after traumatic SCI appeared to improve neurological recovery. Furthermore, incomplete SCI was more closely related to favorable neurological improvement than complete SCI. Therefore, we recommend early decompression as an effective treatment for traumatic SCI.

Effect of air stacking training on pulmonary function, respiratory strength and peak cough flow in persons with cervical spinal cord injury

  • An, Sang-Kyun;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Objective: This study investigated the effects of air stacking training (AST) on pulmonary function, respiratory strength, and peak cough flow (PCF) in persons with cervical spinal cord injury (CSCI). Design: Randomized controlled trial. Methods: A total of 24 persons with CSCI were randomly allocated to the AST group (n=12) or the incentive spirometry training (IST) group (n=12). Patients with CSCI received AST or IST for 15 minutes, with 3 sessions per week for 4 weeks, and all groups performed basic exercises for 15 minutes. In the AST group, after the subject inhaled the maximal amount of air as best as possible, the therapist insufflated additional air into the patient's lung using an oral nasal mask about 2-3 times. In the IST group, patients were allowed to hold for three seconds at the maximum inspiration and then to breathe. The pre and post-tests measured forced vital capacity (FVC), forced expiratory volume one at second (FEV1), maximal expiratory pressure (MEP), maximal inspiratory pressure (MIP) and PCF. Results: Both groups showed significant improvements in FVC, FEV1, MEP, MIP and PCF values after training (p<0.05). The FVC in the post-test and the mean change of FVC, FEV1, MIP were significantly higher in the AST group than the IST group (p<0.05). Conclusions: The findings of this study suggested that AST significantly improved pulmonary function, respiratory strength, and PCF in persons with CSCI. Therefore, AST should be included in respiratory rehabilitation programs to improve coughing ability, pulmonary function and respiratory muscle strength.

Transcranial direct current stimulation for spinal cord injury-associated neuropathic pain

  • Li, Caixia;Jirachaipitak, Sukunya;Wrigley, Paul;Xu, Hua;Euasobhon, Pramote
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.156-164
    • /
    • 2021
  • Several types of pain occur following spinal cord injury (SCI); however, neuropathic pain (NP) is one of the most intractable. Invasive and non-invasive brain stimulation techniques have been studied in clinical trials to treat chronic NP following SCI. The evidence for invasive stimulation including motor cortex and deep brain stimulation via the use of implanted electrodes to reduce SCI-related NP remains limited, due to the small scale of existing studies. The lower risk of complications associated with non-invasive stimulation, including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), provide potentially attractive alternative central neuromodulation techniques. Compared to rTMS, tDCS is technically easier to apply, more affordable, available, and potentially feasible for home use. Accordingly, several new studies have investigated the efficacy of tDCS to treat NP after SCI. In this review, articles relating to the mechanisms, clinical efficacy and safety of tDCS on SCI-related NP were searched from inception to December 2019. Six clinical trials, including five randomized placebo-controlled trials and one prospective controlled trial, were included for evidence specific to the efficacy of tDCS for treating SCI-related NP. The mechanisms of action of tDCS are complex and not fully understood. Several factors including stimulation parameters and individual patient characteristics may affect the efficacy of tDCS intervention. Current evidence to support the efficacy of utilizing tDCS for relieving chronic NP after SCI remains limited. Further strong evidence is needed to confirm the efficacy of tDCS intervention for treating SCI-related NP.

Charcot Spinal Arthropathy with Extensive Vertebral Body Destruction and Cerebrospinal Fluid Collection: A Case Report Mimicking Infective Spondylitis (척추체의 광범위한 파괴와 뇌척수액 축적이 동반된 샤르코 척추 관절병증: 감염성 척추염과 유사한 소견을 보이는 증례보고)

  • Cho, Kyu-Jung;Kim, Yeo-Ju;Kim, Young-Tae;Youn, Yung-Hun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.348-353
    • /
    • 2020
  • A 68-year-old man presented with a bed sore with pus discharge on lower back. Radiographs showed extensive destruction of the L4 vertebral body. Magnetic resonance imaging (MRI) showed fluid collection with an enhanced wall at the defect of the L4 vertebral body extending into both psoas muscles. The primary diagnosis was neuropathic spondylopathy, but infective spondylitis was not ruled out. Initially, he was treated with antibiotics for two weeks. A follow-up MRI showed no improvement of the abscess, so surgical exploration was done. Charcot spinal arthropathy resulted in extensive vertebral body destruction that may be similar to infectious spondylitis, particularly in the case with fluid accumulation due to rupture of dura.

Effects of cyanocobalamin and its combination with morphine on neuropathic rats and the relationship between these effects and thrombospondin-4 expression

  • Duzenli, Neslihan;Ulker, Sibel;Sengul, Gulgun;Kayhan, Buse;Onal, Aytul
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.66-77
    • /
    • 2022
  • Background: Thrombospondin-4 (TSP4) upregulates in the spinal cord following peripheral nerve injury and contributes to the development of neuropathic pain (NP). We investigated the effects of cyanocobalamin alone or in combination with morphine on pain and the relationship between these effects and spinal TSP4 expression in neuropathic rats. Methods: NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Cyanocobalamin (5 and 10 mg/kg/day) was administered 15 days before CCI and then for 4 and 14 postoperative days. Morphine (2.5 and 5 mg/kg/day) was administered only post-CCI. Combination treatment included cyanocobalamin and morphine, 10 and 5 mg/kg/day, respectively. All drugs were administered intraperitoneally. Nociceptive thresholds were detected by esthesiometer, analgesia meter, and plantar test, and TSP4 expression was assessed by western blotting and fluorescence immunohistochemistry. Results: CCI decreased nociceptive thresholds in all tests and induced TSP4 expression on the 4th postoperative day. The decrease in nociceptive thresholds persisted except for the plantar test, and the increased TSP4 expression reversed on the 14th postoperative day. Cyanocobalamin and low-dose morphine alone did not produce any antinociceptive effects. High-dose morphine improved the decreased nociceptive thresholds in the esthesiometer when administered alone but combined with cyanocobalamin in all tests. Cyanocobalamin and morphine significantly induced TSP4 expression when administered alone in both doses for 4 or 14 days. However, this increase was less when the two drugs are combined. Conclusions: The combination of cyanocobalamin and morphine is more effective in antinociception and partially decreased the induced TSP4 expression compared to the use of either drug alone.

Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities

  • Fakhri, Sajad;Sabouri, Shahryar;Kiani, Amir;Farzaei, Mohammad Hosein;Rashidi, Khodabakhsh;Mohammadi-Farani, Ahmad;Mohammadi-Noori, Ehsan;Abbaszadeh, Fatemeh
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.291-302
    • /
    • 2022
  • Background: Spinal cord injury (SCI) is one of the most debilitating disorders throughout the world, causing persistent sensory-motor dysfunction, with no effective treatment. Oxidative stress and inflammatory responses play key roles in the secondary phase of SCI. Naringenin (NAR) is a natural flavonoid with known anti-inflammatory and antioxidative properties. This study aims at evaluating the effects of intrathecal NAR administration on sensory-motor disability after SCI. Methods: Animals underwent a severe compression injury using an aneurysm clip. About 30 minutes after surgery, NAR was injected intrathecally at the doses of 5, 10, and 15 mM in 20 µL volumes. For the assessment of neuropathic pain and locomotor function, acetone drop, hot plate, inclined plane, and Basso, Beattie, Bresnahan tests were carried out weekly till day 28 post-SCI. Effects of NAR on matrix metalloproteinase (MMP)-2 and MMP-9 activity was appraised by gelatin zymography. Also, histopathological analyses and serum levels of glutathione (GSH), catalase and nitrite were measured in different groups. Results: NAR reduced neuropathic pain, improved locomotor function, and also attenuated SCI-induced weight loss weekly till day 28 post-SCI. Zymography analysis showed that NAR suppressed MMP-9 activity, whereas it increased that of MMP-2, indicating its anti-neuroinflammatory effects. Also, intrathecal NAR modified oxidative stress related markers GSH, catalase, and nitrite levels. Besides, the neuroprotective effect of NAR was corroborated through increased survival of sensory and motor neurons after SCI. Conclusions: These results suggest intrathecal NAR as a promising candidate for medical therapeutics for SCI-induced sensory and motor dysfunction.