• Title/Summary/Keyword: Spinal cord: injury

Search Result 503, Processing Time 0.025 seconds

Factors Influencing Quality of Life of People with Noncongenital Spinal Cord Injury (중도척수장애인의 삶의 질에 미치는 영향 요인)

  • Hwang, Hye Min;Yi, Myungsun
    • Korean Journal of Adult Nursing
    • /
    • v.26 no.4
    • /
    • pp.444-454
    • /
    • 2014
  • Purpose: The purpose of the study was to examine the relationships among pain belief, perceived social support, coping strategies, and quality of life of people with noncongenital spinal cord injury and to identify factors influencing quality of life. Methods: A correlational predictive design was used. The data were collected from 197 people with noncongenital spinal cord injury with questionnaires in 2012 in Korea. The data were analyzed using descriptive statistics, t-tests, one-way ANOVA, Pearson's correlation coefficients, and stepwise multiple regression using SPSS/WIN 18.0. Results: Pain belief, perceived social support, and coping strategies were correlated significantly with the quality of life. As a result of stepwise multiple regression analysis, pain belief, perceived social support, coping strategies, damaged area, and time since injury were discovered to account for 59.1% variance of the quality of life. The variable that most affected the quality of life was pain belief followed by perceived social support and coping strategies. Conclusion: The results of the study clearly demonstrate the importance of pain control, social support, and coping skills in order to improve quality of life among people with noncongenital spinal cord injury.

The Inter- and Intra-rater Reliability of the Functional Reach Test in Subjects With Spinal Cord Injury (척수손상환자의 Functional Reach Test의 신뢰도)

  • Kim, Young-Rok;Min, Won-Kyu
    • Physical Therapy Korea
    • /
    • v.6 no.3
    • /
    • pp.51-58
    • /
    • 1999
  • In general, sitting balance is decreased in subjects with spinal cord injury. The purpose of this study was to evaluate the inter- and intra-rater reliability of the Functional Reach Test (FRT) which is used to measure sitting balance. The subjects of this study were 26 persons with spinal cord injury, and they were divided into three groups according to their injury level. Group I, II and III consisted of the following $C_5{\sim}C_8$ quadriplegics, $T_1{\sim}T_4$, and $T_9{\sim}T_12$ paraplegics, respectively. Subjects sat on a mat table that was set at an 80 degree inclination. During three sessions, the length subjects could reach in the FRT test was measured by three physical therapists, and compared to each other. The results showed that intraclass correlation coefficients (2,1) were above 0.97 and inter-rater difference was not statistically significant. The one-way ANOVA demonstrated that reach differed between groups with lower thoracic lesion and the other test groups. In conclusion, we think modified FRT is useful and reliable method to measure the sitting balance in subjects with spinal cord injury.

  • PDF

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

Cellular Changes of Phenotype and Collagenase-1 Expression in Healing Corneal Stromal cells

  • Jung, Jae-Chang
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.271-277
    • /
    • 2003
  • Regulation of endoplasmic reticulum(ER) chaperone, ERp29, in traumatized rat spinal cord was investigated. Compared to the control, ERp29 expression was down-regulated at the lesion site 1 d after spinal cord injury. However, ERp29 expression gradually increased from 3 d after the injury and peaked remarkably after 7 d. Two ER chaperones (GRP94 and BiP) showed constantly strong expression levels 1 d after spinal cord injury while the expression levels of the other two (calnexin and PDI) were unchanged. In the case of ERp72, its expression level was increased 1 d after the injury and gradually decreased thereafter. This study suggests that ERp29 expression in the spinal cord after traumatic injury might be associated with the posttraumatic neural survival, playing a role as a molecular chaperone.

The Effect of Minocycline on Motor Neuron Recovery and Neuropathic Pain in a Rat Model of Spinal Cord Injury

  • Cho, Dong-Charn;Cheong, Jin-Hwan;Yang, Moon-Sul;Hwang, Se-Jin;Kim, Jae-Min;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • Objective : Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury. Methods : To simulate spinal cord injury, the rats' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test Mechanical hyperalgesia was measured throughout the 28-day post -operative course via the von Frey test Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (lba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5). Results : In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of lba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of lba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline. Conclusion : By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.

Effect of Tetramethylpyrazine on Neuronal Apoptosis in Spinal Cord Compression Injury of Rats (Tetramethylpyrazine이 흰쥐 척수압박손상의 신경세포 자연사에 미치는 영향)

  • Jo, Jong-Jin;Kim, Seung-Hwan;Lee, Joon-Seok;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : The pathophysiology of acute spinal cord injury(SCI) may be divided into primary and secondary mechanisms of injury. The secondary mechanism involves free radical formation, excitotoxicity, inflammation and apoptotic cell death, and sets in minutes after injury and lasts for weeks or months. During this phase the spinal tissue damages are aggravated. Therefore, secondary mechanisms of injury serve as a target for the development of neuroprotective drug against SCI. The present study investigated the effect of tetramethylpyrazine(TMP), an active ingredient purified from the rhizome of Ligusticum wallichii(川芎, chuanxiong), on neuronal apoptosis in spinal cord compression injury in rats. Methods : SCI was subjected to rats by a static compression method(35 g weight, 5 mins) and TMP was treated 3 times(30 mg/kg, i.p.) during 48 hours after the SCI. Results : TMP ameliorated the tissue damage in peri-lesion of SCI and reduced TUNEL-labeled cells both in gray matter and in white matter significantly. TMP also attenuated Bax-expressed motor neurons in the ventral horn and preserved Bcl-2-expressed motor neurons. Conclusions : These results indicate that TMP plays a protective role in apoptotic cell death of neurons and oligodendrocytes in spinal cord injury. Moreover, it is suggested that TMP and TMP-containing chuanxiong may potentially delay or protect the secondary spinal injury.

The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

  • Guven, Mustafa;Akman, Tarik;Yener, Ali Umit;Sehitoglu, Muserref Hilal;Yuksel, Yasemin;Cosar, Murat
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.335-341
    • /
    • 2015
  • Objective : The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuro-protective effects of kefir on spinal cord ischemia injury in rats. Methods : Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results : The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-$1{\alpha}$ and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion : Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

Phrenic Nerve Stimulation for Diaphragm Pacing in a Quadriplegic Patient

  • Son, Byung-Chul;Kim, Deog-Ryung;Kim, Il-Sup;Hong, Jae Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.4
    • /
    • pp.359-362
    • /
    • 2013
  • Chronic hypoventilation due to injury to the brain stem respiratory center or high cervical cord (above the C3 level) can result in dependence to prolonged mechanical ventilation with tracheostomy, frequent nosocomial pneumonia, and prolonged hospitalization. Diaphragm pacing through electrical stimulation of the phrenic nerve is an established treatment for central hypoventilation syndrome. We performed chronic phrenic nerve stimulation for diaphragm pacing with the spinal cord stimulator for pain control in a quadriplegic patient with central apnea due to complete spinal cord injury at the level of C2 from cervical epidural hematoma. After diaphragmatic pacing, the patient who was completely dependent on the mechanical ventilator could ambulate up to three hours every day without aid of mechanical ventilation during the 12 months of follow-up. Diaphragm pacing through unilateral phrenic nerve stimulation with spinal cord stimulator was feasible in an apneic patient with complete quadriplegia who was completely dependent on mechanical ventilation. Diaphragm pacing with the spinal cord stimulator is feasible and effective for the treatment of the central hypoventilation syndrome.

The Study of Behavior and Histological Change on Treadmill Exercise Intensity after Spinal Cord Injury in Rats (트레드밀 강도에 따른 운동이 척수손상 흰쥐의 행동학적 변화와 조직학적 변화에 관한 연구)

  • Kim, Young-Eok
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • This study was designed to investigate the effect of treadmill exercise of low-intensity and high-intensity on the functional recovery and histological change in spinal cord injury rats. Sprague-Dawley rats were experimented(n=15) for this research. Spinal cord injury was induced by the NYU drop impacter device after laminectomy. After operation, rats were test at modified Tarlov scale at 3 days, and divided into the control group(n=5), experimental group I(n=5, low-intensity treadmill) and experimental group II(n=5, high-intensity treadmill). The rats were disciplined from 7 day through 21 day. Functional recovery was evaluated by the BBB scales and the Grid Walk test for the progressive locomotor recovery at 3, 7, 14, 21 days. Histopathological studies for the muscle in order to observation the change of damage and size of the organized surface which is visible visually it executed hematoxylin & eosin stain. According to the result of 4 weeks of treadmill exercise, group II showed improvement than group I of motor behavior after spinal cord injury.

  • PDF

Correlation Between Walking Ability Assessment Tools for Patients With Spinal Cord Injury Using MBI, FIM, SCIM II, WISCI, Walking Velocity, and Walking Endurance (척수손상 환자의 보행능력 검사를 위한 평가도구의 비교: MBI, FIM, SCIM II, WISCI, 보행속도, 보행지구력)

  • Lee, Hyoung-Soo;Song, Byung-Ho;Shin, Young-Il
    • Physical Therapy Korea
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The main purposes of this study were to find the correlation between walking ability assessment tools using the Modified Barthel Index (MBI), Functional Independence Measure (FIM), Spinal Cord Injury Measurement II (SCIM II), Walking Index for Spinal Cord Injury (WISCI), walking velocity, and walking endurance. The study population consisted of 56 patients with spinal cord injury referred to the department of Rehabilitative Medicine in the National Rehabilitation Hospital. All subjects were ambulatory with or without an assistive device. All participants were assessed by MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance. The data were analyzed using Pearson correlation analysis and X2. There was significant correlation between the MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance (p<.01). In particular, WISCI has a significant correlation with SCIM II(p<.001). Therefore the WISCI scale is an appropriate assessment tool to predict the gait ability of patients with spinal cord injury. Further study about MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance is needed using a longitudinal study design.

  • PDF