• 제목/요약/키워드: Spinal Loading

검색결과 47건 처리시간 0.034초

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

  • Chun, Kwonsoo;Yang, Inchul;Kim, Namhoon;Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권5호
    • /
    • pp.412-418
    • /
    • 2015
  • Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰 (The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments)

  • 김용
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.295-301
    • /
    • 2000
  • 뼈의 성장에 미치는 많은 요소들 중에서 implant의 상대적인 미세운동(relative micromotion)은 뼈의 implant와의 접합을 방해하는 것으로 알려져 왔다. 그런데 이러한 상대적인 운동 및 spinal stability에 직접적으로 영향을 주는 하중조건, spinal material의 물성치, spinal geometry 및 뼈와 implant의 접촉면에서의 마찰계수를 고려하기 위하여, 하나의 titanium interbody cage 가 삽입된 human lumbar segments (L4-L5)의 유한요소 모델이 개발되었다. 이러한 유한요소 모델의 해석을 통하여 상대적인 미세운동, Posterior의 수직적인 변위, von Mises 응력 및 마찰력이 예측되었다. Cancellous bone. annulus fibers 및 ligaments의 기계적인 물성치의 감소 또는 접촉면에서의 마찰계수의 감소는 상대적인 미세운동 (relative micromotion or slip distance)을 증가 시켰다. 접촉면에서의 normal force는 뼈의 밀도 (cancellous bone density) 가 감소하거나 접촉마찰계수가 증가하면 감소했다. 특히 하중조건에 있어서, compressive preload에 대한 torsion의 추가는 접촉면의 anterior부위에서 상대적인 미세운동을 증가 시켰다. 하지만 디스크면적이 증가할수록 상대적인 미세운동은 감소했다. 결론적으로, 접촉면의 기계공학적 거동 (Relative micromotion, stress response, posterior axial displacement and contact normal force)은 접촉면의 마찰계수 뼈의 밀도, 하중조건 및 노화에 따른 형상/물성의 변화에 매우 민감함을 보이고있다.

  • PDF

척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구 (A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System)

  • 김성민;양인철;강호철
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.

척추운동분절 FE모델에서 충격시간에 따른 마미 단면적의 변화 (Cross sectional area change of the dural-sac according to impact duration in a spinal motion segment FE model)

  • 김영은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • In this study the occlusion of dural-sac, the outer membrane of spinal cord in the lumbar region, was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac far different compressive impact duration(loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. t=400 msec case 4% cross sectional area change was calculated, which is the same as the cross sectional area change under 6 kN of static compressive loading.

  • PDF

다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석 (Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration)

  • 김영은;박덕용
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화 (Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data)

  • 정태은
    • 한국CDE학회논문집
    • /
    • 제17권6호
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

요추부 극돌기간 고정기구의 생체역학적 해석 (Biomechanical Analysis of Lumbar Interspinous Process Fixators)

  • 허순;박정홍;이성재;손권
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.195-202
    • /
    • 2006
  • The degenerative lumbar spinal stenosis (DLSS) is a disease inducing low back pain, leg pain, convulsion. numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degeneration of neighbor lesion after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified it using the finite element analysis (FEA). The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and calculated from the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator. Three prototypes were manufactured using FEA results. Mechanical tests under the biomechanical loading condition were performed to select the best one from these three. The selected fixator increased flexiblity by 32.9%.

가방 하중의 크기와 방식에 따른 척추 정적 자세의 변화 (Alteration of the Static Posture of Spine under Different Types and Amounts of Loading)

  • 박용현;김영관;김윤혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.230-236
    • /
    • 2011
  • The aim of this study was to investigate the alteration of lumbar spine and trunk postures on different load-carrying types and amounts under static loading. Two load-carrying types(unilateral carrying: UC vs. bilateral carrying: BC) and four different loads(0, 5, 10, and 15 kg) were randomly tested in this study. Carrying a heavy bag would affect human body posture, specifically lumbar spine curvature, which is considered as one of sources of back problems. Previous studies have not paid attention to the approach of the multisegment model of the lumbar spine and trunk. This study separated two compartments of trunk segment(the lumbar and thorax) in the analysis. The multisegment model of the lumbar spine in addition to Helen-Hayes marker set was used. Eight motion analysis cameras and a force plate were utilized. Ten male subjects(mean mass, $70.6{\pm}3.97$ kg; mean height, $178{\pm}4.18$ m) having no musculoskeletal disease participated in this study. We analyzed trunk angles in three anatomical planes and the spinal curvature in sagittal and frontal planes. Increased loading in both UC and BC significantly resulted in increases in trunk forward lean but only UC induced increases in trunk lateral lean. In addition, increased loading in BC produced flatten lumbar curvature in sagittal plane. As far as coupling motion, subjects tended to use axial rotation of the lumbar spine in transverse plane in response to increased UC loading. Finally, it is concluded that the increased static loading in UC rather than in BC tends to causes combined alterations of the spinal postures(sagittal and transverse planes together), which would be vulnerable to improper mechanical stresses on the spine.

척추 파열 골절 치료를 위한 전.후방 척추고정술의 생체역학적 안정성 평가 (Biomechanical Stability Evaluation of Anterior/posterior Spinal Fusion for Burst Fracture)

  • 박원만;김윤혁;박예수;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.187-188
    • /
    • 2006
  • A 3-D finite element model of human thoracolumbar spine (T12-L2) was reconstructed from CT images. Various anterior and posterior instrumentation techniques were performed with long cage after corpectomy. Six loading cases were applied up to 10 Nm, espectively. The rotations of T12 with respect to L2 were measured and the stiffnesses were calculated as the applied forces divided by the segmental rotations. The posterior fixation technique increased the stiffness of the spine the most. The addition of anterior rod from 1 to 2 increased the stiffness significantly without posterior fixation, but no effect was found with posterior fixation. We found that different fixation techniques changed the stiffness of the spine.

  • PDF

퇴행성 요추부 척추관 협착증 치료를 위한 극돌기간 고정기구의 설계 및 생체역학적 분석 (Design of the Interspinous Process Fixator Using Biomechanical Analysis for the Treament of Degenerative Lumbar Spinal Stenosis)

  • 허순;손권;이성재;문병영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1963-1966
    • /
    • 2005
  • Degenerative lumbar spinal stenosis(DLSS) is a disease inducing low back pain, leg pain, convulsion, numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degenerative of neighbor region after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design of the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified fixators using the finite element analysis(FEA). Displacement, stiffness and Von-Mises stress were found to have similar values to those obtained from the mechanical test and the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator.

  • PDF