• Title/Summary/Keyword: Spin glass

Search Result 259, Processing Time 0.025 seconds

Enhanced Performance Characteristics of Polymer Photovoltaics by Adding an Additive-incorporated Active Layer

  • Lee, Hye-Hyeon;Hwang, Jong-Won;Jo, Yeong-Ran;Gang, Yong-Su;Park, Seong-Hui;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.316-316
    • /
    • 2010
  • Thin films spin-coated from solvent solutions are characterized by solution parameters and spin-coating process. In this study, performance characteristics of polymer solar cells were investigated with changing solution parameters such as solvent and additives. The phase-separation between polymer and fullerene is needed to make the percolation pathway for better transportation of hole and electron in polymer solar cells. For this reason, cooperative effects of solvent mixtures adding additives with distinct solubility have been studied recently. In this study, chlorobezene, 1, 2-dichlorbenzene, and chloroform were used as solvent. 1, 8-diiodoctaned and 1, 8-octanedithiol were used as additives and were added into poly(3-hexylthiophene-2, 5-diyl)/[6, 6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM) blends. Pre-patterned ITO glass was cleaned using ultrasonication in mixed solvent with ethyl alcohol, isopropyl alcohol and acetone. PEDOT:PSS was spin-coated on to the ITO substrate at 3000rpm and was baked at $120^{\circ}C$ for 10min on the hotplate. The prepared solution was spin-coated at 1000rpm and the spin-coated thin film was dried in the Petri dishes. Al electrode was deposited on the thin film by thermal evaporation. The devices were annealed at $120^{\circ}C$ for 30min. By adding 2.5 volume percent of additives into the chlorobenzene from that bulk heterojunction films consisting of P3HT/PCBM, the power efficiency (AM 1.5G conditions) was increased from 2.16% to 2.69% and 3.12% respectively. We have investigated the effect of additives in P3HT/PCBM blends and the film characteristics and the film characteristics including J-V characteristics, absorption, photoluminescence, X-ray diffraction, and atomic force microscopy to mainly depict the morphology control by doping additives.

  • PDF

Photocatalytic Efficiency of $TiO_2$Thin Films by Spin-coating (Spin-coating법에 의한 $TiO_2$의 광촉매 효율)

  • Kim, Beom-Jun;Byeon, Dong-Jin;Lee, Jung-Gi;Park, Dal-Geun
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.264-269
    • /
    • 2000
  • TiO$_2$thin films were prepared on the glass by a conventional spin coating method with $TiO_2$ sol(30wt%, anatase). The thickness of the thin films were controlled by the number of coating cycles: one cycle is composed of spin coating, drying, and heating process. The reaction rate of the film was obtained by the photodecomposition of gaseous benzene under 0.44 and 2.0mW/$\textrm{cm}^2$ UV light on the film surface. For an incident UV light intensity of 0.44mW/$\textrm{cm}^2$, the reaction rate was increased with the thickness of the film, caused by extent of surface area, but there was no change over the thickness of about 4$\mu\textrm{m}$. The porous $TiO_2$ thin film has comparatively vast effective surface area, which under relatively high-intensity UV illumination causes the reaction rate to be controlled by the film thickness.

  • PDF

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

Optical properties of metal doped TiO2 thin films prepared by spin coating-pyrolysis process (스핀코팅으로 금속물질을 도핑한 TiO2박막의 광학적 특성)

  • Hwang, Kyu-Seong;Kim, Jai-Min;Jung, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • Metal-doped $TiO_2$ thin films were prepared on soda-lime-silica glass substrates by using a spin coating-pyrolysis process. As-deposited films were prefired at $500^{\circ}C$ or 10 min in air. Five-coated films were finally annealed at $600^{\circ}C$ for 30 min in air. High resolution X-ray diffraction, field emission scanning electron microscope and UV spectrophotometer were used to analyze film's property. The largest red shift in optical energy gap is obtained in the Fe-doped $TiO_2$ film.

  • PDF

Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method (스핀코팅법으로 제작한 산화구리 박막의 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.171-176
    • /
    • 2015
  • We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.

Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method (스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성)

  • Kim Hyun-Ju;Lee Dong-Yun;Song Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.

Characterization of Transparent Electrodes using Carbon Nanotubes Coated by Conductive Polymers (전도성 고분자가 코팅된 탄소 나노튜브 투명전극의 특성 분석)

  • Kim, Bu-Jong;Han, Sang-Hoon;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • This study demonstrates transparent electrodes with characteristics desirable for touch screen panels using carbon nanotubes (CNTs). This has been accomplished by depositing CNTs on glass substrates via spray coating and then depositing thin conductive polymer films on the CNTs via spin coating. For all of the samples, such as CNTs, conductive polymers, and polymer-coated CNTs, the surface morphologies, sheet resistances, visible transmittances, chromatic properties are characterized as functions of their preparation conditions, such as the spray times for CNTs and the spin speeds for conductive polymers. The experimental results confirm that only the polymer-coated CNTs can satisfy all of the requirements that are required for electrodes of touch screen panels, such as the sheet resistance lower than $100{\Omega}/sq$, the visible transmittance higher than 80 %, and the yellowness smaller than 1.

Uniaxial Magnetic Anistotropy of a NiO-Spin Valve Device

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • The shape anisotropy effect of a giant magnetoresistance-spin valves (GMR-SV) device with a glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe layered structure for use in the detection of magnetic property of molecules within a cell was investigated. The patterned device was given uniaxial anisotropy during the sputtering deposition and vacuum post-annealing, which was performed at $200^{\circ}C$ under a 300 Oe magnetic field. The pattern size of the device, which was prepared through the photolithography process, was $2{\times}15\;{\mu}m^2$. The experimental results confirmed that the best design for a GMR-SV device to be used as a biosensor is to have both the axis sensing current and the easy axis of the pinned NiO/NiFe/CoFe triple layer oriented in the direction of the device's width, while the easy axis of the free CoFe/NiFe bilayer should be pointed along the long axis of the device.

THE LOW TEMPERATURE DEPENDENCE OF MAGNETIZATION AND AC SUSCEPTIBILITY OF GLASSY $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x=0,5,10,15) ALLOYS

  • Strom, V.;Kim, K.S.;Jonsson, B.J.;Yu, S.C.;Inoue, A.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.515-518
    • /
    • 1995
  • We have studied the magnetization in fields up to 1T at 5K, the saturation magnetization dependence on temperature and the temperature dependence of AC-susceptibility at very low fields (5mOe to 50mOe) of glassy $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x = 0, 5, 10, 15) alloys. The temperature dependence of the magnetization follows the predictions of spin wave excitations with long wavelengths. At zero Ni concentration there is a clear competition between ferromagnetic and antiferromagnetic interactions giving rise to spin-glass behaviour. The addition of Ni drastically modifies the magnetic properties: the antiferromagnetic exchange coupling is reduced and finally disappears, the spin wave stiffness increases from 39.5 to $87.3\;meV{\AA}^{2}$ and To increases from 230 K to 478 K. We develop a simple model to quantify the competing interactions and to relate the antiferromagnetically coupled Fe moments to the Ni concentration. We find that the initial susceptibility increases with increasing Ni content along with a decrease of the temperature dependence.

  • PDF

Synthesis and Properties of Carbon Nanotube Paste with Different Inorganic Binders for Field Emission Display

  • Park, Jae-Hong;Moon, Jin-San;Nam, Joong-Woo;Park, Jong-Hwan;Berdinsky, A.S.;Yoo, Ji-Beom;Lee, C.G.;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.468-470
    • /
    • 2004
  • CNT pastes with different inorganic binder such as glass frit and spin on glass (SOG) were synthesized by using multi-walled nanotube (MWNT) grown by CVD. The uniformity of cathode layer after firing was enhanced and the emission current density at an applied field of 7.95V/${\mu}m$ increased from 133${\mu}A$/$cm^2$ to 265${\mu}A$/$cm^2$ when inorganic binder changed from glass frit to SOG. The emission properties of CNT pastes with SOG were stable and uniform although firing was carried out at relatively high temperature of 450$^{\circ}C$ under air. It is concluded that SOG is more suitable inorganic binder than glass frit for field emission application.

  • PDF