• Title/Summary/Keyword: Spin

Search Result 3,830, Processing Time 0.029 seconds

Study of Organic-inorganic Hybrid Dielectric for the use of Redistribution Layers in Fan-out Wafer Level Packaging (팬 아웃 웨이퍼 레벨 패키징 재배선 적용을 위한 유무기 하이브리드 유전체 연구)

  • Song, Changmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2018
  • Since the scaling-down of IC devices has been reached to their physical limitations, several innovative packaging technologies such as 3D packaging, embedded packaging, and fan-out wafer level packaging (FOWLP) are actively studied. In this study the fabrication of organic-inorganic dielectric material was evaluated for the use of multi-structured redistribution layers (RDL) in FOWLP. Compared to current organic dielectrics such as PI or PBO an organic-inorganic hybrid dielectric called polysilsesquioxane (PSSQ) can improve mechanical, thermal, and electrical stabilities. polysilsesquioxane has also an excellent advantage of simultaneous curing and patterning through UV exposure. The polysilsesquioxane samples were fabricated by spin-coating on 6-inch Si wafer followed by pre-baking and UV exposure. With the 10 minutes of UV exposure polysilsesquioxane was fully cured and showed $2{\mu}m$ line-pattern formation. And the dielectric constant of cured polysilsesquioxane dielectrics was ranged from 2.0 to 2.4. It has been demonstrated that polysilsesquioxane dielectric can be patterned and cured by UV exposure alone without a high temperature curing process.

Exploring the Link between Intrapreneurship and Entrepreneurial Self-efficacy (사내기업가활동이 창업효능감에 미치는 영향)

  • Park, Iljoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.2
    • /
    • pp.165-180
    • /
    • 2019
  • Recently, the Korean government announced that it would focus on fostering intrapreneurship and corporate spin-off. The government encourages intrapreneurship because it ultimately seeks to develop industries and markets, grow innovative companies, and job creation. In particular, the government believes that enhancing intrapreneurship will reduce the personal fear of failures, expand open innovation by utilizing resources within existing companies related to innovation creation, and lead to new start-ups. Accordingly, this research reviewed the previous studies on corporate entrepreneurship activities and entrepreneurial self-efficacy and briefly looked at the status of global intrapreneurship activities. Based on the Global Entrepreneurship Monitor Adult Population Survey data in 2015, this study conducted a logistic regression analysis with the data of 27 OECD member countries' and Korean respondents. The finding confirms that the personal experience of intrapreneurship could be positively associated with entrepreneurial self-efficacy of the person. Therefore, it seems to be worth for the Korean government considering policies that support intrapreneurship as part of the start-up policy.

Drying seaweeds using hybrid hot water Goodle dryer (HHGD): comparison with freeze-dryer in chemical composition and antioxidant activity

  • Nagahawatta, D.P.;Asanka Sanjeewa, K.K.;Jayawardena, Thilina U.;Kim, Hyun-Soo;Yang, Hye-Won;Jiang, Yunfei;Je, Jun-Geon;Lee, Tae-Ki;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Seaweeds are a potential source of minerals, essential amino acids, fatty acids, proteins, and various bioactive compounds such as antioxidants. The higher water content of seaweeds reduces the shelf life and this requires the appropriate drying method. The drying conditions play a major role in the conservation of nutrient composition in dried seaweeds. In recent years, the seaweed industry has used many different drying methods with advantages and limitations. Hybrid hot-water Goodle dryer (HHGD) which is a special dryer mixed with hot-water and a Korean traditional heating system (Goodlejang) might be a solution to avoid these limitations. The present study evaluated the effect of drying conditions in HHGD on nutrient composition and bioactivities of brown seaweeds. Moreover, freeze-dryer (FD) and HHGD were employed in this study to compare the dried outputs obtained from four brown seaweed species. The present study aims to evaluate the effect of the hybrid hot-water Goodle drying method (HHGDM) on the nutritional composition and antioxidant activity of dried seaweeds. AOAC standard methods were used to analyze the proximate composition of dried samples and their 70% ethanol extract. The intracellular and extracellular antioxidant activities were evaluated using Vero cells and electron spin resonance (ESR) spectrometer respectively. High performance liquid chromatography, apoptotic body formation, and in-vivo experiments were used for further confirmation of the quality of dried output. The proximate composition results obtained from drying in HHGD and FD did not exhibit any significant difference. Moreover, the seaweed extracts from the dried seaweeds by HHGD and FD dryings were also not different and both significantly down-regulated in-vivo and in-vitro oxidative stress. Furthermore, the high performance liquid chromatography results revealed that the two dryers did not make the major peaks different in the chromatograms. Freeze-drying method (FDM) provides elevated quality for dried output, but there are limitations such as high cost and low capacity. The results from a novel HHGD did not provide any significant difference with the results in FD and expressed a potential to avoid the limitations in FD. Overall, these findings solidified the applicability of HHGD over FD.

Morphometric Characterization of Honey Bee, Apis mellifera Linnaeus, Inbred Lines in Korea (국내 서양종꿀벌 순계의 형태적 특징)

  • Frunze, Olga;Сhoi, Yong Soo;Kim, Dong Won;Park, Bo Sun;Park, Hee Geun;Kang, Eun Jin
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.371-382
    • /
    • 2020
  • The A, C, F colonies of Apis mellifera ligustica Spin. and D, V colony of Apis mellifera caucasia Gorb. bees were collected from 2005-2007. Consequently, inbred lines were derived from the bees of original colonies by matting in the isolated island with due regard for pure breeding. This project helps in the selection of colonies with higher production capacity, aiming to improve honey and royal jelly production and breeding programs. Twenty-three standard morphological traits of honeybee were evaluated, and samples were compared with the data of the two original subspecies. The result suggested that 8 traits partly preserved in bees of inbred lines, and the bees from A. m. ligustica preserved more traits than bees from A. m. caucasia. Among the studied inbred lines, the F line is distinguished by an increase in leg parameters, considered as a favorable phenotypic trait of inbred lines. Importantly, bred of beelines in the same area can be classified as remote and isolated areas. Therefore, we observed differences of inbred lines with the origin subspecies in description acquired with morphometric characteristics as a result of adaptation, breeding, purebred individual lines used as an important resource for breeding novel cross-breeding colonies.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Penetration behavior by carbon potential in laser-carburized TiZrN coatings (TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동)

  • Lee, Byunghyun;Kim, Taewoo;Hong, Eunpyo;Kim, Seonghoon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.282-286
    • /
    • 2021
  • Penetration depth and compressive residual stress of laser-carburized TiZrN coating by thickness of carbon paste were investigated in terms of carbon potential. The carbon paste was covered with a thickness of 1.1 mm using screen printing, and applied to a thickness of 0.4 mm using spin coating, and laser carburization was performed under the same conditions. As the thickness of carbon paste increased, the diffraction pattern of the laser-carburized TiZrN coating shifted to a lower angle, indicating solid solution strengthening and lattice distortion. For microstructure analysis using TEM, the defects and carbon concentration of the laser-carburized TiZrN coating increased as the carbon paste was thicker. It indicated that the variation of the carbon potential corresponds to the change in the paste thickness. In XPS depth profile analysis, high concentration of carbon and formation of carbide were observed in laser-carburized TiZrN coating with thick carbon paste. It revealed that the carbon concentration on the surface and carbon potential were changed by the thickness control of carbon paste. The compressive residual stress increased from 3.67 GPa to 4.58 GPa by the variation of carbon concentration.

Evaluation of Effect of Decrease in Metallic Artifacts using the Synthetic MR Technique (Synthetic MR 기법을 이용한 금속 인공물 감소 효과 평가)

  • Soon-Yong, Kwon;Nam-Yong, Ahn;Jeong-Eun, Oh;Seong-Ho, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.835-842
    • /
    • 2022
  • This study is aimed to evaluate the effects of a synthetic MR technique in reducing metal artifacts. In the experiment, the in-plane and through-plane images were acquired by applying a synthetic MR technique and a high-speed spin echo technique to a phantom manufactured with screw for spinal surgery. The area of the metal artifact was compared. The metal artifacts were measured by dividing the signal-loss and the signal pile-up areas, and the area of the final artifact was calculated through the sum of the two. As a result, the metal artifacts were relatively reduced when the synthetic MR techniques were applied to both in-plane and through-plane. Comparing by sequence, the in-plane T1 images decreased by 23.45%, T2 images by 20.85%, PD images by 19.67%, and FLAIR images by 22.12%. Also, in the case of the through-plane, the T1 image decreased by 62.95%, the T2 image decreased by 73.93%, the PD image decreased by 74.68%, and the FLAIR image decreased by 66.43%. The cause of this result is that when the synthetic MR technique is applied, the distortion is due to the signal pile-up and does not occur and the size of the entire metal artifact is reduced. Therefore, synthetic MR technique can very effectively reduce metal artifacts, which can help to increase the diagnostic value of images.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF