• Title/Summary/Keyword: Spin^{C}-strutcures$

Search Result 1, Processing Time 0.015 seconds

p-EQUIVARIANT SPINC-STRUCTURES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that ${\sigma}\;:\;X\;{\rightarrow}\;X$ is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold $\Sigma$ as a fixed point set with ${\Sigma\cdot\Sigma}\;{\geq}\;0\;and\;[\Sigma]\;{\neq}\;0\;{\in}\;H_2(X;\mathbb{Z})$. We show that if _X(\Sigma)\;+\;{\Sigma\cdots\Sigma}\;{\neq}\;0$ then the $Spin^{C}$ bundle $\={P}$ is not $\mathbb{Z}_2-equivariant$, where det $\={P}\;=\;L$ is a basic class with $c_1(L)[\Sigma]\;=\;0$.