• Title/Summary/Keyword: Sphingomonas sp.

Search Result 46, Processing Time 0.023 seconds

Characterization of TCE-Degrading Bacteria and Their Application to Wastewater Treatment

  • Lee, Wan-Seok;Park, Chan-Sun;Kim, Jang-Eok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.569-575
    • /
    • 2002
  • Two bacterial strains capable of degrading trichloroethylene (TCE), isolated form soils contaminated with various chlorinated alkenes, were identified as Alcaligenes odorous N6 and Nocardia sp. Hl7. In addition, four KCTC strains, including three strains of Pseudomonas putida and one strain of Sphingomonas chlorophenolica, exhibited an ability to degrade toluene. A. odorans N6 and Nocardia sp. H17 degraded 84% of the initial amount of TCE in a basal salts medium (BSM), containing 0.2 mM TCE as the sole source of carbon and energy, in a day. The optimal pH for growth was within a range of 7.0-8.0. A mixed culture of the four toluene-degrading isolates degraded 95% of 0.2 mM TCE with 1.5 mM toluene as an inducer, whereas no TCE was degraded by the same mixture without an inducer. When a mixed culture of all 6 isolates was used, the degradation efficiency of 0.2 mM TCE was 72% without an inducer, in a day, and 82% with toluene as an inducer. In a continuous treatment, 1,000 mg/1 of TCE in an artificial wastewater was completely removed within 18 h when an activated sludge was used along with the microbial mixture, which was 27 h laster than when only an activated sludge was used. Accordingly, it would appear that such a microbial mixture could be effectively applied to the biological treatment of wastewater containing TCE with or without an inducer.

Effects of pH Control Methods on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-contaminated Soil (Phenanthrene-오염토양의 동전기 생물학적 복원에서 pH 조절방법이 제거효율에 미치는 영향)

  • Kim, Sang-Joon;Park, Ji-Yeon;Lee, You-Jin;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.181-187
    • /
    • 2006
  • In this study, problems related with pH control in electrokinetic(EK) bioremediation of phenanthrene contaminated soil were observed, and the effects of pH control methods on the removal efficiency were investigated to search a further application strategy. In a preliminary experiment, it was found out by flask cultivation that a certain sulfate concentration was needed to degrade phenanthrene well using Sphingomonas sp. 3Y. However, when $MgSO_4$ was used as sulfate source in EK bioremediation, the bacterial activity reduced seriously due to the abrupt decrease of pHs in soil and bioreactor by the combination of magnesium and hydroxyl ions. When another strong buffering compound was used to control the pH problem, the good maintenance of the bacterial activity and pHs could be observed, but the removal efficiency decreased largely. When a low concentration of $MgSO_4$ was added, the removal efficiency decreased somewhat in spite of the good maintenance of neutral pHs. With the addition of NaOH as a neutralizing agent, the removal efficiency also decreased because of the increase of soil pH. Consequently the selection of electrolyte composition was a very important factor in EK bioremediation and some sulfate sources suitable for both bacterial activity and contaminant degradation should be investigated.

Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant (정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교)

  • Kim, Geun-Su;Min, Byung-Dae;Park, Su-Jeong;Oh, Jung-Hwan;Cho, Ik-Hwan;Jang, Seok-Jea;Kim, Ji-Hae;Park, Sang-Min;Park, Ju-Hyun;Chung, Hyen-Mi;Ahn, Tae-Young;Jheong, Weonhwa
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2013
  • Biofilm formed on stainless and copper in water treatment plant was investigated for sixteen weeks. Biofilm reactor was specially designed for this study. It was similar to that of a real distribution pipe. Raw water, coagulated, settled, filtered and treated water were used in this study. The average number of heterotrophic bacteria counts was $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml, respectively. Density of biofilm bacteria formed on stainless and copper pipes in raw, coagulated and settled water increased above $2.9{\times}10^3CFU/cm^2$ within second weeks while more biofilm bacteria counts were found on the stainless pipe than on the copper pipe. In case of filtered water (free residue chlorine 0.44 mg/L), there was no significant difference in the number of biofilm bacteria on both pipes and biofilm bacteria below $18CFU/cm^2$ were detected on both pipe materials after fifth weeks. Biofilm bacteria were not detected on both pipe materials in treated water (free residue chlorine 0.88 mg/L). According to the results of DGGE analysis, Sphingomonadacae was a dominant species of biofilm bacteria formed on the stainless pipe while the copper pipe had Bradyrhizobiaceae and Sphingomonadaceae as dominant bands. In case of filtered water, a few bands (similar to Propionibacterium sp., Sphingomonas sp., Escherichia sp., and etc.) that have 16S rRNA sequences were detected in biofilm bacteria formed on both pipes after fifth weeks. Stainless pipe had higher species richness and diversity than the copper pipe.

Isolation and Characterization of Soil Bacteria Degrading a Fungicide Defenoconazole (살균제 디페노코나졸 분해 세균 분리 및 특성 분석)

  • Ahn, Jae-Hyung;Ro, Yu-Mi;Lee, Gwan-Hyeong;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.349-354
    • /
    • 2016
  • Triazole fungicides occupy an important portion in the global fungicide market and are relatively persistent in soil compared to the other fungicides, suggesting possible adverse effects of the fungicides on human health and environment. In this study, we tried to isolate microorganisms from orchard soils, which can decompose the triazole fungicides, tebuconazole, fluquinconazole, and difenoconazole. Only difenoconazole was completely degraded in the enrichment culture, from which several difenoconazole-degrading bacteria were isolated. They showed the same rep-PCR pattern thus only one strain, C8-2, was further studied. The strain was identified as Sphingomonas sp. C8-2 based on its 16S rRNA gene sequence and decomposed 100 mg/L of difenoconazole in a minimum medium to an unknown metabolite with a molecular weight of 296 within 24 hours. The inhibition effect of the metabolite against representative soil microorganisms significantly decreased compared to that of difenoconazole thus the bacterial strain is expected to be used for the detoxification of difenoconazole in soil and crop.

Application of a New Conjugation Method to Fish Pathogenic Bacteria Containing R Plasmid for the Analysis of Drug-Resistant Status in Aquaculture (새로운 conjugation 방법을 응용한 R plasmid 함유 어병세균의 분리와 양식장 내성균의 현황 분석)

  • Yoo Min Ho;Jeong Joon Beom;Kim Eun Heui;Lee Hyoung Ho;Jeong Hun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • To develop a new method of conjugation and to determine the distribution of R plasimds, we isolated multi-drug resistant strains from fish pathogenic bacteria in the farms of south and east seacoasts of Korea. Out of the 134 isolates examined, 10 showed resistance to chloramphenicol, tetracycline, streptomycin, ampicillin, colistin, nalidixic acid, oxolinic acid and kanamycin. One out of 10 multi-drug resistance bacteria, Vibfio damsela JE1 (V. damsela JE1), contained transferable R plasmid of chlorarnphenicol- tetracycline resistance genes and other nucleic acids encoding ampicillin and kanamycin resistance. The presence of the R plasmid was confirmed by conjugation using the chromocult medium (CC) as a selective and differential medium for transconiugants with identification based on the growth or colors of the colonies. The frequency of R plasmid transfer with filter mating method was come out much higher than that of broth mating method and appeared to be dependent upon the mating time and temperature. The optimum conditions for filter mating method were found to be 30$^{\circ}C$ and 24hrs as mating temperature and period, respectively, Moreover, donor cells with R plasmid, both isolate and standard bacteria, were shown to have an ability to transfer the plasmid against Escherichia coli K-12 HB101 (E. coli HB101) and Edwardsiella tarda (E. tarda) RE14 at fairly high frequencies, finally, we isolated 3 isolates of Sphingomonas sp., carrying R plasmid from 12 multi-drug resistant bacteria in normal microflora of the flounder (Paralichthys olivaceus) group used for the isolation of V emsela JE1 four months before. The same size and gene transfer chayateristics of R plasimds with those of V damsela JE1 confirmed that normal microflora have the reservoir activity for R plasmid in natural aquatic environment.

Antifungal and Proteolytic Activity and Auxin Formation of Bacterial Strains Isolated from Highland Forest Soils of Halla Mountain (한라산 고지대 토양에서 분리한 미생물의 항균 및 단백질분해 활성, 오옥신 생산 특성)

  • Kim, Tack-Soo;Ko, Min-Jung;Lee, Se-Weon;Han, Ji-Hee;Park, Kyung-Seok;Park, Jin-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • Bacterial strains were isolated from forest soils of Halla mountain, Jeju island in Korea. The soil samples were collected at each altitude of 100m from 1,000 m above sea level. Total 398 strains were isolated and tested for their physiological characteristics of antagonistic and proteolytic activities, and auxin production. Among the isolates, 172 strains were selected as antifungal strains showing antagonistic activity against at least one of 8 plant fungal pathogens (Alternaria alternata, Botrytis cinerea, Collectotrichum acutatum, Fusarium oxysporum, Phytophthora capsici, Pythium ultimum and Sclerotinia sclerotiorum). In addition 203 strains for proteolytic activity and 26 strains for auxin production were characterized for further study. Je28-4 (Rhodococcus sp.) were showed 80% of control value against tomato gray mold in vivo. Thus, it is suggested that soil bacteria isolated from forest soils of Halla mountain can be important sources of bioactive compounds for improving plant growth or promising biocontrol agents.