• Title/Summary/Keyword: Spheroidal and Flake Graphite Cast Iron

Search Result 7, Processing Time 0.017 seconds

A Study on the Solidification Characteristics of CV Graphite Cast Iron (CV흑연주철(黑鉛鑄鐵)의 응고특성(凝固特性)에 관한 연구(硏究))

  • Chun, C.C.;Kim, S.Y.;Lee, G.W.
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.5-12
    • /
    • 1985
  • Many researchers have studied the eutectic solidification of CV Graphite Cast Iron qualitatively. However quantative studies have not been done. The type of eutectic solidification of CV Graphite Cast Iron treated with CG Alloy (Fe-Si-Mg-5Ti-Ca-Ce) was studied quantitatively through M.D.E. value (Mushy Degree of Eutectic Solidification) = $t_2/t_1)$, where $t_1$ is the difference of the eutectic solidification starting time between surface and center part of the casting sample, and $t_2$ is the time of eutectic solidification of the center part. Following results were obtained. (1) The M.D.E. value of CV graphite cast iron lies between that of spheroidal graphite and that of flake graphite cast iron but is closer to that of Flake graphite cast iron. (2) The M.D.E. value of CV graphite cast iron depends upon CV ratio. (3) The time required for eutectic solidification increases as graphite form is changed from Flake, CV. to spheroidal graphite. (4) The M.D.E. value increases as cooling rate increases.

  • PDF

A Study of the CV graphite cast iron with small additions of a Al-Cu alloy (Al-Cu첨가(添加)에 의(依)한 CV흑연주철(黑鉛鑄鐵)에 관한 기초연구)

  • Jeon, Hyeong-Tag;Hur, Bo-Young;Kim, Soo-Yong
    • Journal of Korea Foundry Society
    • /
    • v.3 no.4
    • /
    • pp.239-247
    • /
    • 1983
  • CV graphite cast iron has been studied and generally known to have properties close to the average values of those between flake and spheroidal graphite cast iron. However, the thermal diffusivity of CV graphite cast iron is much larger than that of the average value of those between flake and spheroidal graphite cast iron. In this study, an easy production method of CV graphite cast iron with small additions of a Al-Cu which is known as the element of the graphitization was investigated. The effects of hold time and of Al-Cu additions after the treatments with spheroidizer (Fe-Si-Mg alloy) were also investigated. Increasing the additions of a Al-Cu alloy, the holding time to form a CV graphite cast iron was decreasing. Tensile strength and thermal diffusivity (flash method) were measured in order to find the changes of the mechanical properties and the physical properties. Spheroidal, CV, and flake graphite cast iron have tensile strengths 46.44, 38.29, and $27.29\;kg/mm^2$ and thermal diffusivities $3.95{\times}10^{-6,}$ $8.41{\times}10^{-6}$, $8.81{\times}10^{-6}m^2/sec$, respectively at room temperature.

  • PDF

A Study on the Graphitization and Scaling Resistance property of High Al-Cast Iron (고(高)알루미늄 내열주철(耐熱鑄鐵)에서의 흑연구상화(黑鉛球狀化)와 내산화성(耐酸化性)에 관한 연구(硏究))

  • Kim, D.K.;La, H.Y.
    • Journal of Korea Foundry Society
    • /
    • v.1 no.2
    • /
    • pp.2-9
    • /
    • 1981
  • Graphite spheroidization and scaling resistance of cast iron containing 5-10% Al were investigated. It is impossible to obtain spheroidal graphite in cast iron containing Al with 8 % and over, but possible to obtain spheroidal graphite even in cast iron with an Al content of about 10 % by increasing Si content. In the scaling test carried out under the heating condition of $950^{\circ}C$ in air for total of 50 hours, the scaling resistance of cast iron containing Al with 8 % and over was remarkably superior, and also spheroidal graphite cast iron was superior to flake graphite cast iron. The scale became thinner more compacts and more protective with increasing Al content.

  • PDF

The Influences of Graphite Shape and Alloying Elements(Mn, Ni) on the Thermal Properties of Cast Iron. (주철의 열적 성질에 미치는 흑연현상 및 첨가원소(Mn, Ni)의 영향)

  • Roh, Moo-Kun;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.80-88
    • /
    • 1989
  • SGCI(Spheroidal Graphite Cast Iron), CVGCI(CV Graphite Cast Iron) and FGCI(Flake Graphite Cast Iron) having different contents of Mn($0.25%{\sim}0.85%$) and Ni($0.3%{\sim}1.2%$) were produced, respectively. The thermal expansion and thermal conductivity of the cast iron were investigated in the temperature range of $50^{\circ}C{\sim}300^{\circ}C$. As the graphite nodularity of the cast iron increases, thermal expansion coefficient increases, thermal conductivity and electrical conductivity to thermal conductivity ratio decrease. The thermal expansion coefficient of the cast iron increases with increasing Mn content and decreases with increasing Ni content. The thermal conductivity of the cast iron decreases with increasing Mn and Ni contents.

  • PDF

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(I) - Characteristics of Surface Hardening by Die Materials - (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(I) - 금형재료에 따른 표면경화 특성 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1041-1047
    • /
    • 2011
  • In this study, two types of die material cast iron was treated for surface hardening by using high power diode laser to improve mechanical properties of die which is using as essential production technology in the parts manufacturing in virtually all the infrastructure industries now. First of all, the heat treatment characteristics of FCD550 material which is spheroidal graphite cast iron, and through the heat treatment of HCI350 material which is flake graphite cast iron, the heat treatment characteristics of the two materials were compared. The hardness of hardened zone increased over 3 times over base material for both specimens, but as for required heat input, HCI350 was higher than FCD550 material depending on the heat conductivity of the materials by the content amount and shape of graphite contained in the material.

A study on the formation of surface solidification layer in compacted/vermicular graphite cast iron (CV흑연주철(黑鉛鑄鐵)에서의 표면응고층(表面凝固層) 생성(生成)에 관(關)한 연구(硏究))

  • Park, K.S.;Lee, S.I.;Kim, S.Y.
    • Journal of Korea Foundry Society
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 1986
  • In order to investigate the solidification characteristics of CV. graphite cast iron, decantation technique and thermal analysis test were used. Solidification characteristics were studied in the specimens with various compositions and graphite shape. The results were as follows; 1. The first surface solidifcation layer is formed along the mold wall by the growth of austenite dendrites in hypoeutectic composition and thin solid film in hypereutectic composition. 2. The mushy degree of solidifcation of hypereutiectic composition is higher than that of hypoeutectic. 3. In hypoeutectic, the effect of change of the mushy degree of solidification on the graphite shape is small, however, in hypereutectic the mushy degree of solidification becomes higher in order of flake, CV, and spheroidal graphite cast iron.

  • PDF

Characteristics of Heat Treatment on Different Materials during Laser Surface Hardening of Cast Iron for Die (금형재료용 주철의 레이저 표면경화처리시 재료에 따른 열처리 특성)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1663-1668
    • /
    • 2011
  • Surface hardening treatment is required to improve the wear-resistance of press die because severe abrasion of die occurs during the drawing process in which the forming of the automotive body is completed and during the trimming process in which the unnecessary parts are cut. In this study, experiments on the laser surface treatment of press die are performed. Specimens are heat-treated separately at certain plate and edge position by using a diode laser to carry out suitable surface hardening treatment to reduce the wear during the drawing and the trimming processes, and the proper conditions for heat treatment are found. Spheroidal and flake graphite cast iron specimens are used, and the heat treatment characteristics of the two materials are compared. From the results of the study, it is confirmed that the heat treatment characteristics differed depending on the materials.