• Title/Summary/Keyword: Spherical waves

Search Result 55, Processing Time 0.022 seconds

A New Approach on the Scattering of Electromagnetic Radiation for Spherical Raindrop by the Invariant Imbedding Method

  • 이경동;이동훈;김기홍
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.35-35
    • /
    • 2003
  • In satellite communication, attenuation, scattering, and depolarization of relatively high frequency waves such as millimeter waves are strongly influenced by rain. In order to study the rain attenuation, we introduce a new theoretical method, which enables us to obtain the reflection and transmission coefficients in arbitrary medium. We adopt this method to examine how the electromagnetic radiation is affected by homogeneous spherical raindrops. It is assumed that the raindrop shape is spherical and linearly locate in one direction. For the radiation of wave in raindrops, we consider the effective permittivity, in which the raindrop is assumed to be spherical. By adopting the invariant imbedding approach, the 1st order differential equations are derived for the reflection and transmission coefficients. We investigate the transmission and reflection of waves for various incident angles when the spherical raindrops are assumed to have random sizes.

  • PDF

Retrieval of Spherical Ocean Wave Parameters Using RADARSAT-2 SAR Sensor Observed at Chukk, Micronesia

  • Chaturvedi, Sudhir Kumar;Yang, Chan-Su;Song, Jung-Hwan;Ouchi, Kazuo;Shanmugam, P.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.213-223
    • /
    • 2011
  • The purpose of this study is to estimate the spherical wave parameters that appears in synthetic aperture radar (SAR) image acquired over the coast of Chukk, Micronesia. The retrieval of ocean wave parameters consists of two main stages: the first is to determine the dominant wavelengths by Fast Fourier Transform (FFT) over 16 sub-image areas and the second is to estimate wave slopes and heights using dispersion relationship under various water wave conditions. It is assumed that the spherical waves are linear and progressive. These type of waves have the range and azimuth components traveling in radial directions. The azimuth travelling waves are more affected by the velocity bunching mechanism and it is difficult to estimate the wave parameters for these affected areas in SAR imagery. In order to compensate these effects, the velocity bunching ratio (VBR) based on modulation transfer function (MTF) was compared with the intensity ratio for neighbor area in the radial direction in order to assign the spherical wave properties for azimuthally travelling waves. Dispersion relation provides the good estimates for the wave heights for all the selected sub-image areas in the range of 1m to 2m. VBR based on MTF was found to be 0.78 at wave height of 1.36m, while the intensity-based VBR was 0.69 which corresponds to the height of 1.75m. It can be said that the velocity bunching accounts for azimuthally travelling spherical waves and the difference results from the sea-bottom effects.

Scour around spherical bodies due to long-crested and short-crested nonlinear random waves

  • Myrhaug, Dag;Ong, Muk Chen
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.257-269
    • /
    • 2012
  • This paper provides a practical stochastic method by which the maximum equilibrium scour depth around spherical bodies exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour and self-burial depths by Truelsen et al. (2005). An example calculation is provided.

Interactions of Spherical Acoustic Shock Waves with a Spherical Elastic Shell near a Free-Surface (자유표면 근처에서의 구형 셸과 충격파의 비정상 유체-구조물 상호작용 해석)

  • Lee, Min-Hyung;Lee, Beom-Heon;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1143-1148
    • /
    • 2002
  • This paper analyses the transient response of a spherical elastic shell located near fee surface and impinged by spherical step-exponential acoustic shock waves. The problem is solved through extension of a method (Huang, 1969) previously formulated for the excitation in an infinite domain, which employs the classical separation of variables, series solutions, and Laplace transform technique The effect of the free surface reflection is taken into account using the image source method. The reflection of the incident wave has been treated by the same image formulation. If the reflection of the pressure field scattered and radiated by the shell is considered, the problem becomes that of multiple scattering by two spheres. However, this is in general negligible considering errors inherent from other sources and that the scattered and radiated pressure waves emanating from the shell are small. Thus, the problem is reduced to that of a structure immersed in an infinite fluid and impinged upon the origin and the image incident.

A hybrid algorithm of underwater structure vibration and acoustic radiation-propagation in ocean acoustic channel

  • Duan, Jia-xi;Zhang, Lin;Da, Liang-long;Sun, Xue-hai;Chen, Wen-jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.680-690
    • /
    • 2020
  • In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.

Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves (점회절 구면파의 전단 간섭계를 이용한 절대위치 측정)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

Transient interactions between submerged elastic shells and acoustic shock waves from a moving source (움직이는 소스와 구형쉘의 상호작용 해석)

  • 이민형;이범헌;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.85-89
    • /
    • 2001
  • The problem of the transient interaction of a plane acoustic shock wave which has an infinitely steep wave front with a cylindrical or spherical elastic shell has been studied analytically from early fifties based on the integral transform and series solution techniques. Huang adopted an inverse Laplace transform, and used a finite number of terms of the infinite series expansion of the equations for the shells. In the 1990s, the results have been used by many authors for validation of computer codes. The object of this paper is to discuss the interaction between a moving source and submerged spherical shells. Since the center of source is moving the first contact location between the waves and shell changes depending on the source velocity and distance. These are considered in the analysis. Furthermore, constant source strength and decreasing strength are considered in the analysis. Radial velocities at several locations on the structure are obtained and the results are discussed.

  • PDF

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

Variational Approaches to Short Waves in Weakly Viscous Fluids

  • Kim, Nam-Chul
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.78-88
    • /
    • 2000
  • A weakly viscous wave and an approximate variational principle in viscous fluids are introduced, with which we can interpret the fundamentals such as how viscosity dissipation occurs with time elapse, and how the free surface boundary layer exists at the wavy surface in weakly viscous fluids. As an application, responses of a spherical buoy on the weakly viscous capillary gravity wave are investigated to show the viscosity effects. At the end, surfactant problems are briefly reviewed with the view of short viscous waves as expected future applications.

  • PDF