• Title/Summary/Keyword: Spherical type LNG tank

Search Result 13, Processing Time 0.022 seconds

A study on forces generated on spherical type LNG tank with central cylindrical part under various static loading

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.530-536
    • /
    • 2016
  • The number of fabrication shop for spherical type LNG tank is proportional to that of the tank radius to be constructed. Due to limitation of facility investment including building sites, it is practically difficult to fabricate various size tanks with perfectly spherical shape in the yards. The efficient method to be capable of increasing cargo tank volume is to extend vertically the conventional spherical type LNG tank by inserting a cylindrical shell structure. The main purpose of this study is to derive related equations on forces generated on spherical type LNG tank with central cylindrical part under various static loadings in order to establish the simplified analysis method for the initial estimate. In this study, equations on circumferential and meridional force have been derived and verified by relations with the reaction forces per unit length of equator.

A Study on Simplified Analysis for the Initial Tank Design of Spherical Type LNG Carriers (구형 LNG 운반선의 초기 탱크 설계를 위한 간이해석법 연구)

  • Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Spherical type LNG carrier has many advantages, but has a demerit it is more expensive than membrane type one. Therefore, when calculating the initial estimate of spherical type LNG carrier, high accuracy calculation of tank weight has to be carried out. In this study the simplified analysis method which is able to calculate stresses of all the tank zones is established and has special feature to deal with static and dynamic loading. In order to verify the established method, the design results obtained through the method in this study have been compared with those of existing ship obtained from finite element analysis. As a result, the usability of simplified analysis method has been confirmed.

Structural Safety Assessment of Independent Spherical LNG Tank(3rd report) - Safety assessment of tank system against crygenic temperature - (독립구형 LNG 탱크의 구조안전성 평가(제3보) - 탱크시스템의 저온 안전성 검토 -)

  • Yong-Yun Nam;In-Sik Nho;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.83-92
    • /
    • 1993
  • This paper describes structural safety assessment techniques against crygenic temperature to design MRV type B LNG tank system. The following items are detail with in detail. (1) Leakage estimation of LNG through the propagating clacks at tank plate was performed and design of the range of catch basin(2ndary barrier) was followed to ensure the safety of ship structures against leaked LNG. (2) Temperature distribution analysis for cargo hold and skirt system was carried out using the steady state heat transfer analysis model for spherical LNG tank system. (3) Thermal stress distribution of skirt and tank system was calculated, where very stiff thermal variation was shwn through item(2) analysis.

  • PDF

A Study on the Thermal Design of the Cryogenic LNG Carrier (초저온 LNG선의 열설계에 관한 연구)

  • 김용모;고상철;천병일;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 1993
  • This paper introduces the outline of hull structure to the sorts of LNG carrier briefly. Especially, explains in detail for the insulation system of Moss Rosenberg Verft spherical tank type LNG carrier. It is not easy task to calculate exactly the temperature distribution of hull because of very complicated structure of hull. Therefore, in this paper by the adequate modeling of the Moss Rosengerg spherical tank type LNG carrier, a program is developed which calculate the temperature distribution of every hull and estimate the heat influx from every hull and output the BOR according to the variation of atmospheric conditions on boyage.

  • PDF

A Study on the Computation of Hull Temperature Distribution and Boil off Ratio of MRV Type LNG Carrier (MRV형 LNG선의 선체온도분포 및 증발률 산정에 관한 연구)

  • 천병일;김용모;김경근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.986-996
    • /
    • 1994
  • Insulation system of LNG carrier has made important roles such as maintaining a proper Boil off Ratio(BOR) for the cargo and avoiding the excessive low temperature of the adjacent inner hull beyond the permissible limit. At the same time, safety and economy of the LNG transportation by the ship are connected with the performance of the insulation system. Also, thermal insulation system of LNG carrier is one of the most advanced technique with the structure analysis of tank, welding and assembling. In this study a computer program is developed to calculate the hull temperature distribution and BOR, which are important factors in thermal design for the Moss Rosenberg Verft spherical tank type LNG carrier. Detailed results for hhull temperature distribution close to LNG tank, BOR and the thickness effect of insulation material are reported in this paper in the range of standare design sea condition.

Development of Equations for Static Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 정적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5060-5066
    • /
    • 2015
  • The number of shop needed for the fabrication of sphere type LNG tank is proportional to that of the tank radius to be constructed. Due to limitation of facility investment including building sites, it is practically difficult to fabricate various size tanks of perfectly spherical shape in the yards. The efficient method to increase cargo tank capacity is to extend vertically the conventional sphere type LNG tank by inserting a cylindrical shell structure. In this study, equations for static design loads are developed for sphere type LNG tank with central extension. The results of this study will be combined with dynamic design loads to build the simplified analysis method which enable the precise initial estimate instead of time consuming finite element analysis.

A study on the thermal characteristics of MOSS type LNG carrier (MOSS형 LNG 선박의 열공학적 특성에 관한 연구)

  • 이세동;송성옥;이종원;김춘식;최두열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • This paper introduced the thermal characteristics of Moss Rosenberg Verft spherical tank type LNG Carrier. Especially described the temperature variation during cooling down condition. It is not easy task to calculate the temperature variation because of unsteady state condition. In this paper, computer simulation program is developed by using a Tomas Algorithm on unsteady state condition and compared with calculation results and experimental results on existing LNG Carrier voyage.

  • PDF

Structural Safety Assessment of Independent Spherical LNG Tank(2nd report) - Fatigue Crack Propagation Analysis Based on the LBF Theory - (독립구형 LNG 탱크의 구조안전성 평가(제2보) - LBF 이론에 의한 피로균열 진전해석 -)

  • In-Sik Nho;Yong-Yun Nam;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.74-82
    • /
    • 1993
  • The present paper deals with the structural safety assessment techniques for independent type B spherical LNG tank against fatique crack initiation and propagation, which contains fellowing 3 steps. 1) Prediction of long term distribution of wave induced stresses and fatique crack intiation life using cumulative damage theory which were described at the 1st report. 2) Surface crack propagation analysis to verify that initial defects cannot penetrate tank plate. 3) Passing-through fatigue crack propagation analysis was performed based on LBF(Leak Before Failure ) theory.

  • PDF

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.

Development of Equations for Dynamic Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 동적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.262-267
    • /
    • 2017
  • The number of shops needed for the fabrication of a sphere type cargo tank for an LNG carrier is proportional to the size of the tank to be constructed. Due to the limitations of facility investment, it is difficult to fabricate various size tanks with a perfectly spherical shape in the (factory). An efficient method of increasing the capacity of the cargo tank is to extend the conventional sphere type LNG tank vertically by inserting a cylindrical shell structure. In this study, equations for the dynamic pressure distribution due to horizontal acceleration are derived for a sphere type LNG tank with central extension. The derived equations can be easily applied to the design and structural assessment of a sphere type LNG tank with central extension. Furthermore, the results of this study can be combined with the static design loads previously reported by Shin & Ko [9], in order to establish a simplified analysis method which enables a precise initial estimate to be obtained, thereby obviating the need for a time consuming finite element analysis.