• 제목/요약/키워드: Spherical silica

검색결과 135건 처리시간 0.028초

구형 메조포어 MCM-41의 합성에 관한 연구 (A Study on the Synthesis of Spherical Mesoporous MCM-41)

  • 유성구;이두형;서길수;이태진
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1096-1098
    • /
    • 1999
  • MCM-41형의 메조포러스 구형 실리카 재료를 염기성 조건에서 양이온 계면활성제를 templating species로 사용하여 합성하였다. 본 실험에서 사용한 계면활성제로는 octyltrimetylammonium bromide, dodecyltrimetylammonium bromide, cetyltrimethylammonium bromide, octadecyltrimethyammonium bromide 및 cetylpyridium bromide이었다. 구형 MCM-41의 비표면적은 $1500m^2/g$나 되었으며 계면활성제의 알킬 사슬의 길이가 길어질수록 기공 크기는 증가하였다.

  • PDF

In situ 미니에멀젼중합에 의한 실리카/폴리스타이렌 복합체 나노입자의 합성과 특성 (Synthesis and Characterization of Silica/Polystyrene Composite Nanoparticles by in situ Miniemulsion Polymerization)

  • ;;송미향;윤주영;김진환;김태호
    • Elastomers and Composites
    • /
    • 제44권1호
    • /
    • pp.34-40
    • /
    • 2009
  • In situ 미니에멀젼 중합으로 실리카/폴리스타이렌 하이브리드 나노복합체를 만들기 위하여 9-데세노 산을 실리카 표면 개질제로 처음 도입하였다. 복합체는 나노크기의 잘 분산된 실리카를 함유하고 있었다. 실리카의 표면 개질 및 폴리스타이렌의 합성 등은 FTIR로 확인하였고 생성 라텍스 중에 존재하는 실리카의 양은 TGA 분석으로 확인하였다. 생성된 하이브리드는 실리카의 양 증가에 따라 유리전이온도가 상승하였다. SEM과 TEM으로 확인한 결과 하이브리드 복합체는 평균 직경이 55 nm 정도로 나타났다. 복합체내의 실리카의 존재는 EDS와 연결된 TEM 등으로 확인되었다.

Changing the Surface-Liquid Crystal Interaction through the Adsorption of Silica Nanoparticles

  • Finotello, Daniele;Jin, Tao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.847-848
    • /
    • 2004
  • We studied a low density 8CB liquid crystal-hydrophobic aerosil dispersions imbedded in submicron-size cylindrical pores. The nanosize spherical aerosil particles are adsorbed at the pore wall and hinder the planar anchoring. The adsorption is temperature dependent, and an axial to radial molecular configuration transition occurs within the cylindrical pores.

  • PDF

Fabrication of Uniform Hollow Silica Nanospheres using a Cationic Polystyrene Core

  • Yun, Dong-Shin;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1534-1538
    • /
    • 2011
  • Uniform, hollow nanosilica spheres were prepared by the chemical coating of cationic polystyrene (cPS) with tetraethylorthosilicate (TEOS), followed by calcination at 600 $^{\circ}C$ under air. cPS was synthesized by surfactant-free emulsion polymerization using 2,2'-azobis (2-methyl propionamidine) dihydrochloride as the cationic initiator, and poly(vinyl pyrrolidone) as a stabilizer. The resulting cPS spheres were 280 nm in diameter, and showed monodispersion. After coating, the hollow silica product was spherically shaped, and 330 nm in diameter, with a narrow distribution of sizes. Dispersion was uniform. Wall thickness was 25 nm, and surface area was 96.4 $m^2/g$, as determined by BET. The uniformity of the wall thickness was strongly dependent upon the cPS surface charge. The effects of TEOS and ammonia concentrations on shape, size, wall thickness, and surface roughness of hollow $SiO_2$ spheres were investigated. We observed that the wall thicknesses of hollow $SiO_2$ spheres increased and that silica size was simultaneously enhanced with increases in TEOS concentrations. When ammonia concentrations were increased, the irregularity of rough surfaces and aggregation of spherical particles were more severe because higher concentrations of ammonia result in faster hydrolysis and condensation of TEOS. These changes caused the silica to grow faster, resulting in hollow $SiO_2$ spheres with irregular, rough surfaces.

마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅 (Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method)

  • 김유진;유리;박은영;피재환;최의석
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

기상반응(CVD)법 의한 실리카 미분말의 제조 (Preparation of Ultrafine Silica Powders by Chemical Vapor Deposition Process)

  • 최은영;이윤복;신동우;김광호
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.850-855
    • /
    • 2002
  • Silica powders were prepared from $SiCl_4$-$H_2$O system by chemical vapor deposition process, and investigated on size control of the products with reaction conditions. The products were amorphous and nearly spherical particles with 130nm~50nm in size. The size distribution became narrow with the increase of [$H_2$O]/[SiCl$_4$] concentration ratio. The particle size decreased with the increase of reaction temperature, [$H_2$O]/[SiCl$_4$] concentration ratio and total flow rate. The specific surface area measured by BET method was about three times larger than that of electron microscope method.

고순도 초미립자 물라이트 분말 합성에 대한 연구 (I) (Studies on the Synthesis of High Purity and Fine Mullite Powder (I))

  • 김경용;김윤호;김병호;이동주
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

Purification of fusion ferritin using silica powder and DEAE chromatography

  • 허윤석;김성규;정은미;김인호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.510-513
    • /
    • 2002
  • Iron is an essential nutrient for most organisms, which supplied to them in a protein-iron complex known as ferritin. Ferritins are multimeric proteins those are consisted of spherical shell of 24 subunits defining a cavity of about 8nm in diameter. Soluble form of ferritin was separated from disrupted cells, followed by silica powder adsorption. Ferritin was recovered from silica-poweder by distiiled water, which was applied to DEAE anion exchage chromatography. Collected fractions from the DEAE column were assayed to gain the amount and the purity of ferritin by using GF-HPLC.

  • PDF