• Title/Summary/Keyword: Spherical silica

검색결과 135건 처리시간 0.024초

구상형 실리카 필러가 실험적 복합레진의 물성에 미치는 효과 (EFFECT OF SPHERICAL SILICA FILLER ON THE PHYSICAL PROPERTIES OF EXPERIMENTAL COMPOSITES)

  • 강승훈;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.88-99
    • /
    • 1999
  • The purpose of this study was to investigate the physical properties of experimental composite resins made with the spherical and crushed fillers. The 14 experimental composite resins containing 0, 5, 10, 15, 20 and 25%(w/w) in spherical filler group and 0, 10, 20, 30, 40, 50, 60 and 70%(w/w) in crushed filler group, incorporated in a Bis-GMA matrix (Aldrich Co., USA), were made with 1% ${\gamma}$-methoxy silane treated fillers. The polymer matrix was made by dissolving 0.7%(w/w) of benzoyl peroxide(Janssen Chemical Co. Japan) in methacrylate monomer, whereupon 0.7%(v/v) N,N-dimethyl-p-toluidine(Tokyo Kasei Co. Japan) was added to the monomer. The weight percentage of each specific particle size distribution could be determined from a knowledge of the specific gravity, the weight(w/w), and corresponding volume %(v/v) of the filler sample in resin monomer. In crushed silica group and spherical silica group, the diametral tensile strengths and compressive strengths were measured with Instron Testing Machine(No.4467), and analyzed in 14 experimental composite resins made by filler fractions. The shear bond strength of 14 experimental composite resins to bovine enamel was measured with universal testing machine(Instron No.4467). The fracture surfaces were sputter-coated with a gold film and investigated by SEM. The results were as follows; 1. The diametral tensile strength was tendency to increase in crushed silica group, but not in spherical silica group. The highest diametral tensile strength was found in 20% filler fractions of two groups. 2. The compressive strength was higher in 15%(w/w) and 20%(w/w) in spherical silica group than in crushed silica group, but not in spherical silica group. 3. The significant correlation was noticed in increase in shear bond strength in crushed silica group, but not in spherical silica group. 4. The significantly highest shear bond strength was noticed in 50% filler concentration in crushed silica group, and in 15% filler concentration in spherical silica group, it was not significant in relation. 5. In crushed silica group, cut surface of resin matrix and the interface between resin and filler is obvious. In spherical silica group, fractures that occurred through the filler particles were round in shape.

  • PDF

Synthesis of spherical silica aerogel powder by emulsion polymerization technique

  • Hong, Sun Ki;Yoon, Mi Young;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.145-148
    • /
    • 2012
  • Spherical silica aerogel powders were fabricated via an emulsion polymerization method from a water glass. A water-in-oil emulsion, in which droplets of a silicic acid solution are emulsified with span 80 (surfactant) in n-hexane, was produced by a high power homogenizer. After gelation, the surface of the spherical silica hydrogels was modified using a TMCS (trimethylchlorosilane)/n-hexane solution followed by solvent exchange from water to n-hexane. Hydrophobic silica wet gel droplets were dried at 80 ℃ under ambient pressure. A perfect spherical silica aerogel powder between1 to 12 ㎛ in diameter was obtained and its size can be controlled by mixing speed. The tapping density, pore volume, and BET surface area of the silica aerogel powder were approximately 0.08 g·cm-3, 3.5 ㎤·g-1 and 742 ㎡·g-1, respectively.

Effect of Mixing Ratio of Spherical Silica on the Electrical Insulation Breakdown Strength in Epoxy Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.101-104
    • /
    • 2013
  • The effect of the mixing ratio of spherical silica on the electrical insulation breakdown strength in an epoxy/silica composite was studied. Spherical silicas with two average particle sizes of $5{\mu}m$ and $20{\mu}m$ were mixed in different mixing ratios, and their total filling content was fixed at 60 wt%. In order to observe the dispersion of the silicas and the interfacial morphology between silica and epoxy matrix, scanning electron microscopy (SEM) was used. The electrical insulation breakdown strength was estimated in sphere-sphere electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of $5/20{\mu}m$ and the thickness dependence of the breakdown strength was also observed.

기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향 (Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing)

  • 이진호;임형미;허수현;정정환;김대성;이승호
    • 공업화학
    • /
    • 제22권6호
    • /
    • pp.631-635
    • /
    • 2011
  • 직접산화법으로 제조한 구형 실리카졸과 비구형 실리카졸의 입자크기와 형상에 따른 산화막의 기계화학적 연마율에 미치는 영향을 연구하였다. 구형 실리카졸은 금속 실리콘 분말로부터 직접산화법에 의해 10~100 nm까지 크기별로 제조하였다. 직접산화법으로 제조한 10 nm 크기의 실리카졸에 산, 알콜, 실란과 같은 응집유도제에 의한 첨가하여 입자간 응집을 유도한 시드 졸을 제조하고, 여기에 실리콘 분말과 알칼리 촉매를 투입하여 직접산화법으로 입자를 성장하여, 두 개 이상의 입자가 응집되어 있는 실리카 시드의 형상이 유지된 상태에서 성장한 응집 비구형 실리카졸을 제조하였다. 이를 산화막 CMP에 적용하여 구형 및 비구형 실리카졸의 입자형상 및 크기에 따른 연마율을 비교하였다. 구형 실리카의 경우, 입자크기가 증가할수록 연마율은 높아졌고, 비구형 실리카졸은 평균입경이 유사한 크기의 구형 실리카 보다 더욱 높은 연마율을 나타내었다.

콜로이달 실리카 입자 형상에 따른 CMP 특성에 관한 연구 (A Study on CMP Characteristics According to Shape of Colloidal Silica Particles)

  • 김문성;정해도
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.1037-1041
    • /
    • 2014
  • 반도체 연마용 슬러리를 이온교환법, 가압방법 및 다단계 주입방법으로 제조하여 입자 크기와 형상에 따른 화학적 기계적 연마에 미치는 영향을 연구하였다. 이온교환법을 이용하여 구형의 콜로이달실리카를 크기별로 입자로 제조하였다. 이렇게 제조한 구형의 실리카를 다시 가압방법을 이용해 입자간의 결합을 유도해 비구형의 형상을 가진 콜로이달 실리카를 제조하였고, 이온교환법과 가압방법의 특징을 살려 실리식산을 다단계로 주입하여 입자 표면과 실리식산의 반응으로, 2~3 개의 입자가 결합한 형상의 콜로이달 실리카를 제조하였다. 이렇게 제조한 입자를 CMP 에 적용하여 콜로이달 실리카의 입자 형상에 따른 연마율을 기존의 상용 슬러리와 비교하였다. pH 가 높을수록 연마율은 높아졌고, 입자가 결합한 비구형의 콜로이달 실리카는 가장 높은 연마율과 양호한 비균일도를 나타내었다.

실리카 함유 콜로이달 분무용액으로부터 합성된 BAM:Mn 형광체 (BAM:Mn Phosphor Prepared from Spray Solution with Colloidal Silica)

  • 주서희;구혜영;홍승권;김도엽;강윤찬
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.123-128
    • /
    • 2006
  • [ $BaMgAl_{10}O_{19}:Mn^{2+}$ ](BAM:Mn) phosphor particles with spherical shape were prepared by spray pyrolysis from colloidal solution with silica. The phosphor particles prepared by spray pyrolysis from aqueous solution had irregular morphology after high temperature post-treatment. On the other hand, the phosphor particles prepared from spray solution with colloidal silica had spherical shape after post-treatment. Colloidal silica used as additive improved the spherical shape and filled morphology of the precursor particles prepared by spray pyrolysis. The precursor particles with filled structure produced the BAM:Mn phosphor particles with spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ under reducing atmosphere. The phosphor particles prepared from colloidal solutions formed the crystal structure of BAM:Mn phosphor irrespective of the silica contents. The BAM:Mn phosphor particles prepared from aqueous and colloidal solutions had similar photoluminescence intensities under vacuum ultraviolet.

Effect of Particle Size on the Mechanical and Electrical Properties of Epoxy/Spherical Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.39-42
    • /
    • 2013
  • The effects of particle size on the mechanical and electrical properties of epoxy/spherical silica composites were studied. The silica particle sizes were varied from 5 to 30 ${\mu}m$ and the filler content was fixed to 60 wt%. Tensile and flexural tests were carried out and the interfacial morphology was observed by scanning electron microscopy (SEM). The electrical insulation breakdown strength was estimated using sphere-sphere electrodes with different insulation thicknesses of 1, 2 and 3 mm. The tensile strength and flexural strength increased with decreasing particle size, while electrical insulation breakdown strength increased with increasing particle size.

실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조 (II) (High-Transmittance Films Coated from Silica Colloidal Nano-Particles (II))

  • 황연
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.399-404
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloidal particles and fumed silica particles. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. The deposition processes were studied to enhance the wavelength dependency of the light transmittance and to control the effective refractive index of the film. Both of the spherical and fumed silica particles showed an enhancement of $4.0-4.4\%$ in light transmittance by one step coating. The dependence of the transmittance on wavelength was largely improved at the longer wavelength by partial coating of fumed particles on the film of spherical particles. The effective refractive index of the film was controlled by removing latex particles that were co-deposited with silica particles. Using this process the light reflectance from one side of the glass substrate could be reduced from $4.2\%$ to $0.6\%$ although zero reflectance was not achieved due to the agglomeration of the latex particles.

Ultrasound-Aided Monolayer Assembly of Spherical Silica Nanobeads

  • 윤상희;윤서영;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.267.1-267.1
    • /
    • 2013
  • In modern science and technology, the organization of building blocks, such as spherical particles and zeolite, is important to form a nanostructure. So, it is essential to develop methods for organizing them into large scale for many precise applications. Up to now, reflux and stirring is widely used method for organization of colloidal particles. However, because this method is hard to organize building block with high coverage and uniform orientation, it is necessary to research another method. In this work, we synthesized spherical silica particles using St$\"{o}$ber method and organized them on the glass which is coated with 3-chloropropyltrimethoxysilane (CP-TMS) and polyethyleneimine (PEI) using Sonication method. Although spherical silica particles are difficult to attach on the glass due to their small attachment site, we improved this problem by coating PEI. We introduced two mode of reaction promotion, sonication (SO) and sonication with stacking between the bare glass (SS), and investigated degree of coverage (DOC) and degree of close packing (DCP).

  • PDF

Effect of Reaction Condition and Solvent on The Size and Morphology of Silica Powder Prepared by An Emulsion Technique

  • Park, Won-Kyu;Kim, Dae-Yong
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.229-235
    • /
    • 2000
  • The spherical silica powder was synthesized by varying the kinds of solvent and mixing energy in emulsion method. The stirring speed varied from 500 to 1000 r.p.m. at 5$0^{\circ}C$ for 2h. Toluene in benzyl groups and a series of alkanes were used as dispersant. The average size of spherical silica particles decreased with increasing the stirring speed and the chain length o solvents used in this work. The average size was controlled in the range of 134~28$\mu\textrm{m}$ by selecting a proper solvent and stirring speed. The optimum processing parameters were described in details.

  • PDF