• Title/Summary/Keyword: Spherical panoramic image

Search Result 12, Processing Time 0.019 seconds

Video Mosaics in 3D Space

  • Chon, Jaechoon;Fuse, Takashi;Shimizu, Eihan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.390-392
    • /
    • 2003
  • Video mosaicing techniques have been widely used in virtual reality environments. Especially in GIS field, video mosaics are becoming more and more common in representing urban environments. Such applications mainly use spherical or panoramic mosaics that are based on images taken from a rotating camera around its nodal point. The viewpoint, however, is limited to location within a small area. On the other hand, 2D-mosaics, which are based on images taken from a translating camera, can acquire data in wide area. The 2D-mosaics still have some problems : it can‘t be applied to images taken from a rotational camera in large angle. To compensate those problems , we proposed a novel method for creating video mosaics in 3D space. The proposed algorithm consists of 4 steps: feature -based optical flow detection, camera orientation, 2D-image projection, and image registration in 3D space. All of the processes are fully automatic and successfully implemented and tested with real images.

  • PDF

360 RGBD Image Synthesis from a Sparse Set of Images with Narrow Field-of-View (소수의 협소화각 RGBD 영상으로부터 360 RGBD 영상 합성)

  • Kim, Soojie;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • Depth map is an image that contains distance information in 3D space on a 2D plane and is used in various 3D vision tasks. Many existing depth estimation studies mainly use narrow FoV images, in which a significant portion of the entire scene is lost. In this paper, we propose a technique for generating 360° omnidirectional RGBD images from a sparse set of narrow FoV images. The proposed generative adversarial network based image generation model estimates the relative FoV for the entire panoramic image from a small number of non-overlapping images and produces a 360° RGB and depth image simultaneously. In addition, it shows improved performance by configuring a network reflecting the spherical characteristics of the 360° image.